Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024302    DOI: 10.1088/1674-1056/ac0dab
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Deep learning for image reconstruction in thermoacoustic tomography

Qiwen Xu(徐启文)1, Zhu Zheng(郑铸)2, and Huabei Jiang(蒋华北)3,†
1 School of Electronic Science and Engineering(National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China;
2 School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
3 Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
Abstract  Microwave-induced thermoacoustic tomography (TAT) is a rapidly-developing noninvasive imaging technique that integrates the advantages of microwave imaging and ultrasound imaging. While an image reconstruction algorithm is critical for the TAT, current reconstruction methods often creates significant artifacts and are computationally costly. In this work, we propose a deep learning-based end-to-end image reconstruction method to achieve the direct reconstruction from the sinogram data to the initial pressure density image. We design a new network architecture TAT-Net to transfer the sinogram domain to the image domain with high accuracy. For the scenarios where realistic training data are scarce or unavailable, we use the finite element method (FEM) to generate synthetic data where the domain gap between the synthetic and realistic data is resolved through the signal processing method. The TAT-Net trained with synthetic data is evaluated through both simulations and phantom experiments and achieves competitive performance in artifact removal and robustness. Compared with other state-of-the-art reconstruction methods, the TAT-Net method can reduce the root mean square error to 0.0143, and increase the structure similarity and peak signal-to-noise ratio to 0.988 and 38.64, respectively. The results obtained indicate that the TAT-Net has great potential applications in improving image reconstruction quality and fast quantitative reconstruction.
Keywords:  thermoacoustic tomography (TAT)      TAT reconstruction      deep learning      finite-element  
Received:  30 April 2021      Revised:  11 June 2021      Accepted manuscript online:  23 June 2021
PACS:  43.35.Ud (Thermoacoustics, high temperature acoustics, photoacoustic effect)  
  87.85.Pq (Biomedical imaging)  
  87.57.nf (Reconstruction)  
  84.35.+i (Neural networks)  
Corresponding Authors:  Huabei Jiang     E-mail:  hjiang1@usf.edu

Cite this article: 

Qiwen Xu(徐启文), Zhu Zheng(郑铸), and Huabei Jiang(蒋华北) Deep learning for image reconstruction in thermoacoustic tomography 2022 Chin. Phys. B 31 024302

[1] Zheng Z and Jiang H B 2019 Quant. Imaging Med. Surg. 9 625
[2] Zheng Z, Huang L and Jiang H 2019 International Applied Computational Electromagnetics Society Symposium, August 8-11, 2019, Nanjing, China, 1-2
[3] Zheng Z, Jiang Y, Huang L, Zhao Y and Jiang H 2020 J. Xray Sci. Technol. 28 137
[4] Chi Z, Zhao Y, Yang J, Li T, Zhang G and Jiang H 2019 IEEE Trans. Biomed. Eng. 66 1598
[5] Huang L, Yao L, Liu L X, Rong J and Jiang H B 2012 Appl. Phys. Lett. 101 244106
[6] Luo W, Ji Z, Yang S and Xing D 2018 Phys. Rev. Appl. 10 024044
[7] Xu F, Ji Z, Chen Q, Yang S and Xing D 2019 IEEE Trans. Med. Imaging 38 205
[8] Kruger R A, Kopecky K K, Aisen A M, Reinecke D R, Kruger G A and Kiser W L 1999 Radiology 211 275
[9] Fu Y, Ji Z, Ding W, Ye F and Lou C 2014 Med. Phys. 41 110701
[10] Ji Z, Lou C, Yang S and Xing D 2012 Med. Phys. 39 6738
[11] Wang B, Zhao Z, Liu S, Nie Z and Liu Q 2017 Appl. Phys. Lett. 111 223701
[12] Wang X, Bauer D R, Witte R and Xin H 2012 IEEE Trans. Biomed. Eng. 59 2782
[13] Patch S K and See W A 2016 Photons Plus Ultrasound:Imaging and Sensing, March 15, 2016, San Francisco, USA
[14] Eckhart A T, Balmer R T, See W A and Patch S K 2011 IEEE Trans. Biomed. Eng. 58 2238
[15] Huang Y, Kellnberger S, Sergiadis G and Ntziachristos V 2018 Sci. Rep. 8 15522
[16] Zheng Z, Huang L and Jiang H 2018 Appl. Phys. Lett. 113 253702
[17] Zhao Y, Chi Z, Huang L, Zheng Z, Yang J and Jiang H 2017 Journal of Innovative Optical Health Sciences 10 1740001
[18] Mrozowski M, Okoniewski M, Okoniewska E and Stuchly M A 1997 IEEE MTT-S International Microwave Symposium Digest, June 8-13, 1997, Denver, USA, pp. 95-97
[19] Xu M and Wang L V 2005 Phys. Rev. E 71 016706
[20] Haltmeier M 2013 Comput. Math. Appl. 65 1025
[21] Burgholzer P, Bauer-Marschallinger J, Grün H, Haltmeier M and Paltauf G 2007 Inverse Problems 23 S65
[22] Cox B T and Treeby B E 2010 IEEE Trans. Med. Imaging 29 387
[23] Treeby B E, Zhang E Z and Cox B T 2010 Inverse Problems 26 115003
[24] Hristova Y, Kuchment P and Nguyen L 2008 Inverse Problems 24 055006
[25] Yuan Z and Jiang H 2006 Appl. Phys. Lett. 88 231101
[26] Belhachmi Z, Glatz T and Scherzer O 2016 Inverse Problems 32 045005
[27] Huang C, Wang K, Nie L, Wang L V and Anastasio M A 2013 IEEE Trans. Med. Imaging 32 1097
[28] Schwab J, Pereverzyev S and Haltmeier M 2018 Siam Journal on Numerical Analysis 56 160
[29] Wang K, Su R, Oraevsky A A and Anastasio M A 2012 Phys. Med. Biol. 57 5399
[30] Javaherian A and Holman S 2017 IEEE Trans. Med. Imaging 36 696
[31] Arridge S R, Betcke M M, Cox B T, Lucka F and Treeby B E 2016 Inverse Problems 32 115012
[32] Xu Y, Wang L V, Ambartsoumian G and Kuchment P 2004 Med. Phys. 31 724
[33] Zhang Z, Liang X, Dong X, Xie Y and Cao G 2018 IEEE Trans. Med. Imaging 37 1407
[34] Li Y, Li K, Zhang C, Montoya J and Chen G 2019 IEEE Trans. Med. Imaging 38 2469
[35] Yin X, Zhao Q, Liu J, Yang W, Yang J, Quan G, Chen Y, Shu H, Luo L and Coatrieux J 2019 IEEE Trans. Med. Imaging 38 2903
[36] Hammernik K, Würfl T, Pock T and Maier A 2017 Bildverarbeitung für die Medizin, March 1, 2017, Berlin, Germany, pp. 92-97
[37] Kang E, Min J and Ye J C 2017 Med. Phys. 44 360
[38] Gupta H, Jin K H, Nguyen H Q, Mccann M T and Unser M 2018 IEEE Trans. Med. Imaging 37 1440
[39] Han Y S, Yoo J and Ye J C 2016 arXiv:1611.06391
[40] Jin K H, Mccann M T, Froustey E and Unser M 2017 IEEE Trans. Image Process 26 4509
[41] Hammernik K, Klatzer T, Kobler E, Recht M P, Sodickson D K, Pock T and Knoll F 2018 Magn. Reson. Med. 79 3055
[42] Han Y, Yoo J, Kim H H, Shin H J, Sung K and Ye J C 2018 Magn. Reson. Med. 80 1189
[43] Xiang L, Chen Y, Chang W, Zhan Y, Lin W, Wang Q and Shen D 2018 IEEE Trans. Biomed. Eng. 66 2105
[44] Allman D, Reiter A and Bell M a L 2018 IEEE Trans. Med. Imaging 37 1464
[45] Antholzer S, Haltmeier M, Nuster R and Schwab J 2018 Photons Plus Ultrasound:Imaging and Sensing, 2018, San Francisco, USA, 104944U
[46] Boink Y E, Manohar S and Brune C 2019 arXiv:1906.07499
[47] Johnstonbaugh K, Agrawal S, Abhishek D, Homewood M, Karri S P K and Kothapalli S R 2019 Photons Plus Ultrasound:Imaging and Sensing, 2019, San Francisco, USA, 108781L
[48] Allman D, Reiter A and Bell M a L 2017 IEEE International Ultrasonics Symposium, September 6-9, 2017, Washington, USA, pp. 1-4
[49] Lan H, Yang C, Jiang D and Gao F 2019 IEEE International Ultrasonics Symposium, October 6-9, 2019, Glasgow, Scotland, pp. 487-489
[50] Kim K, Wu D, Gong K, Dutta J, Kim J H, Son Y D, Kim H K, Fakhri G E and Li Q 2018 IEEE Trans. Med. Imaging 37 1478
[51] Waibel D, Groehl J, Isensee F, Kirchner T, Maier-Hein K and Maier-Hein L 2018 Photons Plus Ultrasound:Imaging and Sensing, 2018, San Francisco, USA, 104942S
[52] Anas E M A, Zhang H K, Audigier C and Boctor E M 2018 Simulation, Image Processing, and Ultrasound Systems for Assisted Diagnosis and Navigation, September 16-20, 2018, Granada, Spain, pp. 3-11
[53] Lan H, Yang C, Jiang D and Gao F 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, July 23-27, 2019, Berlin, Germany, pp. 7115-7118
[54] Lan H, Zhou K, Yang C, Cheng J, Liu J, Gao S and Gao F 2019 Medical Image Computing and Computer Assisted Intervention, October 13-17, 2019, Shenzhen, China, pp. 273-281
[55] Lan H, Zhou K, Yang C, Liu J, Gao S and Gao F 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, July 23-27, 2019, Berlin, Germany, pp. 6367-6370
[56] Hauptmann A, Lucka F, Betcke M, Huynh N, Adler J, Cox B, Beard P, Ourselin S and Arridge S 2018 IEEE Trans. Med. Imaging 37 1382
[57] Aggarwal H K, Mani M P and Jacob M 2019 IEEE Trans. Med. Imaging 38 394
[58] Odena A, Dumoulin V and Olah C 2016 Distill 1
[59] Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, Qiao Y and Loy C C 2019 Computer Vision-ECCV 2018 Workshops, September, 8-14, 2019, Munich, Germany, pp. 63-79
[60] He K, Zhang X, Ren S and Sun J 2016 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Las Vegas, USA, pp. 770-778
[61] He K, Zhang X, Ren S and Sun J 2015 IEEE International Conference on Computer Vision, December 7-13, 2015, Santiago, Chile, pp. 1026-1034
[62] Kingma D P and Ba J 2014 arXiv:1412.6980
[63] Paszke A, Gross S, Massa F, et al. 2019 Adv. Neural Inf. Process. Syst. 32 8026
[64] Yao L, Guo G and Jiang H 2010 Med. Phys. 37 3752
[65] Wang B, Xiong W, Su T, Xiao J and Peng K 2018 Appl. Opt. 57 9123
[66] Zhou W, Bovik A C, Sheikh H R and Simoncelli E P 2004 IEEE Trans. Image Process. 13 600
[67] He Y, Shen Y C, Liu C J and Wang L H V 2017 Appl. Phys. Lett. 110 053701
[1] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[2] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[3] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[4] Fringe removal algorithms for atomic absorption images: A survey
Gaoyi Lei(雷高益), Chencheng Tang(唐陈成), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2022, 31(5): 050313.
[5] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[6] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[7] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[8] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[9] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[10] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[11] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[12] Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates
Ze-Yuan Yang(杨泽园), Jun Wang(王俊), Guo-Feng Wu(武国峰), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(1): 016102.
[13] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
[14] Theoretical investigation of hierarchical sub-wavelength photonic structures fabricated using high-order waveguide-mode interference lithograph
Ru Wang(王茹), Xiangxian Wang(王向贤), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2017, 26(2): 024202.
[15] Passive polarization rotator based on silica photonic crystal fiber for 1.31-μm and 1.55-μm bands via adjusting the fiber length
Chen Lei (陈雷), Zhang Wei-Gang (张伟刚), Wang Li (王丽), Bai Zhi-Yong (白志勇), Zhang Shan-Shan (张珊珊), Wang Biao (王标), Yan Tie-Yi (严铁毅), Jonathan Sieg. Chin. Phys. B, 2014, 23(10): 104220.
No Suggested Reading articles found!