Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 018401    DOI: 10.1088/1674-1056/ac05b1
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection

Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya
State Key Laboratory of Electrical Insulation and Power Equipment, Shaanxi Key Laboratory of Smart Grid, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Recently, the memory elements-based circuits have been addressed frequently in the nonlinear circuit theory due to their unique behaviors. Thus, the modeling and characterizing of the mem-elements become essential. In this paper, the analysis of the multiple fractional-order voltage-controlled memcapacitors model in parallel connection is studied. Firstly, two fractional-order memcapacitors are connected in parallel, the equivalent model is derived, and the characteristic of the equivalent memcapacitor is analyzed in positive or negative connection. Then a new understanding manner according to different rate factor K and fractional order α is derived to explain the equivalent modeling structure conveniently. Additionally, the negative order appears, which is a consequence of the combination of memcapacitors in different directions. Meanwhile, the equivalent parallel memcapacitance has been drawn to determine that multiple fractional-order memcapacitors could be calculated as one composite memcapacitor. Thus, an arbitrary fractional-order equivalent memcapacitor could be constructed by multiple fractional-order memcapacitors.
Keywords:  memcapacitor      fractional calculus      parallel connection      equivalent model  
Received:  05 March 2021      Revised:  15 May 2021      Accepted manuscript online:  27 May 2021
PACS:  84.30.Bv (Circuit theory)  
  07.50.Ek (Circuits and circuit components)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52077160).
Corresponding Authors:  Gangquan Si     E-mail:  sigangquan@mail.xjtu.edu.cn

Cite this article: 

Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection 2022 Chin. Phys. B 31 018401

[1] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[2] Chua L O and Kang S M 1976 Proc. IEEE 64 209
[3] Ventra M D, Pershin Y V and Chua L O 2009 Proc. IEEE 97 1717
[4] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 80 453
[5] Emara A A M, Aboudina M M and Fahmy H A H 2017 Microelectronics J 39 64
[6] Yin Z Y, Tian H, Chen G H and Chua L O 2015 IEEE T Circuits-II 62 402
[7] Yang J J, Pickett M D, Li X, Ohlberg D, Stewart D R and Williams R S 2008 Nat. Nanotechnol. 3 429
[8] Jo S H, Chang T, Ebong I, Bhadviyan B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
[9] Chanthbouala A, Garcia V, Cherifi R O, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur N, Bibes M, Barthèlèmy A and Grollier J 2012 Nat. Mater. 11 860
[10] Pershin Y V and Ventra M D 2011 Adv. Phys. 60 145
[11] Kavehei O, Iqbal A, Kim Y S, Eshraghian K, Al-Sarawi S F and Abbott D 2010 P. Roy. Soc. A-Math. Phy. 466 2175
[12] Kvatinsky S, Friedman E G, Kolodny A and Weiser U C 2012 IEEE. T. Circuits-I. 60 211
[13] Prodromakis T, Peh B P, Papavassiliou C and Toumazou C 2011 IEEE. T. Electron. Dev. 58 3099
[14] Wang Y, Sun J, Yao L and Zhang X 2016 IET. Circ. Device. Syst. 10 244
[15] Biolek D, Biolek Z and Biolkova V 2010 Electron. Lett. 46 520
[16] Biolek D and Biolkova V 2010 Electron. Lett. 46 1428
[17] Martinez J, Di Ventra M and Pershin Y V 2010 Phys Rev B. 81 19
[18] Feali M S, Ahmadi A and Hayati M 2018 Neurocomputing. 309 157
[19] Wang W, Xu H, Hou Y W and Liu H J 2014 Appl. Mech. Mater. 644 3426
[20] Di V M and Pershin Y V 2010 Electron. Lett. 46 517
[21] Iu H C, Fitch A L Wang X Y and Qi W G 2012 Phys. Lett. A 376 394
[22] Sun H G, Zhang Y, Baleanu D, Chen W and Chen Y Q 2018 Commun. Nonlinear Sci. 64 213
[23] Zou Q, Jin Q B and Zhang R D 2016 Chemometr. Intell. Lab. 152 34
[24] Radwan A G, Elwakil A S and Soliman A M 2008 IEEE T. Circuits-I. 55 2051
[25] Wu X J and Shen S L 2009 Int. J. Comput. Math. 86 1274
[26] Cao Y P and Bai C Z 2014 Abstr. Appl. Anal. 2014 1
[27] Petrá I and Chen Y Q 2012 Proceedings of the 13th International Carpathian Control Conference, May 28–31, 2012, High Tatras, Slovaki
[28] Guo Z, Si G Q, Xu X, Qu K and Li S 2019 Nonlinear Dyn. 95 101
[29] Fouda M E and Radwan A G 2014 Microelectronics J. 45 1372
[30] Maan A K, Jayadevi D A and James A P 2016 IEEE Netw. 28 1734
[31] Gu M Y, Liu J B, Wang G Y, Liang Y and Liu F P 2019 Acta Phys. Sin. 68 228401 (in Chinese)
[32] Rajagopal K, Karthikeyan and Srinivasan A 2017 Nonlinear Dyn. 91 1491
[33] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
[34] Pu Y F and Yuan X 2016 IEEE Access 4 1872
[35] Radwan A G, Emira A A, Abdelaty A M and Azar A T 2017 ISA T. 82 184
[36] Zhou Z,Yu D S and Wang X Y 2017 Chin. Phys B. 26 120701
[37] Biolkova V, Biolek D and Biolek Z 2011 Electron. Lett. 47 1385
[38] Fouda M E and Radwan A G 2015 Circuits, Syst. Signal Process. 34 961
[39] Yu Y J and Wang Z H 2015 Acta Phys. Sin. 64 238401 (in Chinese)
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[3] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[4] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[5] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[6] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[7] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[8] Investigation on the dynamic behaviors of the coupled memcapacitor-based circuits
Zhi Zhou(周知), Dong-Sheng Yu(于东升), Xiao-Yuan Wang(王晓媛). Chin. Phys. B, 2017, 26(12): 120701.
[9] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[10] Memcapacitor model and its application in a chaotic oscillator
Guang-Yi Wang(王光义), Bo-Zhen Cai(蔡博振), Pei-Pei Jin(靳培培), Ti-Ling Hu(胡体玲). Chin. Phys. B, 2016, 25(1): 010503.
[11] Composite behaviors of dual meminductor circuits
Zheng Ci-Yan (郑辞晏), Yu Dong-Sheng (于东升), Liang Yan (梁燕), Chen Meng-Ke (陈孟科). Chin. Phys. B, 2015, 24(11): 110701.
[12] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[13] The fractional coupled KdV equations:Exact solutions and white noise functional approach
Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder. Chin. Phys. B, 2013, 22(8): 080501.
[14] Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative
Rajneesh Kumar, Vandana Gupta. Chin. Phys. B, 2013, 22(7): 074601.
[15] Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus
Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎). Chin. Phys. B, 2013, 22(3): 030506.
No Suggested Reading articles found!