INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Synthesis and study the influence of yttrium doping on band structure, optical, non-linear optical and dielectric results for Ca12Al14O33 (C12A7) single crystals grown using traveling-solvent floating zone (TSFZ) method |
A. Abdel Moez1,†, Ahmed I. Ali2, and A. Tayel2 |
1 Solid State Physics Department, Physical Research Division, National Research Centre(NRC), 33 El Bohouth Street, Dokki, Giza 12622, Egypt; 2 Basic Science Department, Faculty of Faculty of Technology and Education, Helwan University, Kobry El-Qopa, Cairo 11281, Egypt |
|
|
Abstract Ca12Al14O33 (C12A7) and Y0.02Ca11.98Al14O33 (Y-C12A7) single crystals were grown by using the traveling-solvent floating zone (TSFZ) method. The temperature was increased to avoid the bubbles and cracks which may be formed during the preparation of the ingot material. We have started with the flux higher than the normal to avoid the bubbles and make good treatment for the solid-liquid interface. The structures of both Ca12Al14O33 (C12A7) and Y0.02Ca11.98Al14O33 (Y-C12A7) were studied by using x-ray diffraction (XRD). Optical properties for C12A7 and Y-C12A7 single crystals have been studied in order to determine the optical parameters such as optical energy gap (Eg), refractive index n, oscillating energy (Eo), dispersion energy (Ed), volume energy loss function (VELF), and surface energy loss function (SELF). Finally, a new result for these samples is that the third-order nonlinear optical susceptibility (χ(3)) was determined. The results have been discussed with effect of Y-doping on the C12A7 single crystals for optical and industrial applications.
|
Received: 15 April 2021
Revised: 17 May 2021
Accepted manuscript online: 11 June 2021
|
PACS:
|
81.05.-t
|
(Specific materials: fabrication, treatment, testing, and analysis)
|
|
Corresponding Authors:
A. Abdel Moez
E-mail: aam692003@yahoo.com
|
Cite this article:
A. Abdel Moez, Ahmed I. Ali, and A. Tayel Synthesis and study the influence of yttrium doping on band structure, optical, non-linear optical and dielectric results for Ca12Al14O33 (C12A7) single crystals grown using traveling-solvent floating zone (TSFZ) method 2022 Chin. Phys. B 31 018103
|
[1] Exarhos G J and Zhou X D 2007 Thin Solid Films 515 7025 [2] Hosono H 2007 Thin Solid Films 515 6000 [3] Jonas S, Nadachowski F and Szwagierczak D 1999 Ceram. Int. 25 77 [4] Aitasalo T, Holsa J, Jungner H, Lastusaari M, Niittykoski J, Parkkinen M and Valtonen R 2004 Opt. Mater. 26 113 [5] Dongdong J 2006 J. Lumin. 117 170 [6] Murayama Y 1999 Luminous Paints (Boca Raton: Phosphor Handbook, CRC Press) [7] Kang E T, Lee S J and Hannon A C 2006 J. Non Cryst. Solids 352 725 [8] Sampaio J A, Gama S, Baesso M L and Catunda T 2005 J. Non Cryst. Solids 351 1594 [9] Sampaio J A, Catunda T, Coelho A A, Gama S, Bento A C, Miranda L C M and BaessoM L 2000 J. Non Cryst. Solids 273 239 [10] Mazin I I and Papaconstantopoulos D A 2004 Phys. Rev. B 69 180512 [11] Kalita S J, Bose S, Bandyopadhyay A and Hosick H L 2002 J. Mater. Res. 17 3042 [12] Watauchi S, Tanaka I, Hayashi K, Hirano M and Hosono H 2002 J. Cryst. Grow. 237-239 801 [13] Toldsepp E, Avarmaa T, Denks V, Feldbach E, Kirm M, Maaroos A, Mandar H and Vielhauer S 2010 Optic. Mater. 32 784 [14] Gong L, Lin Z, Ning S, Sun J, Shen J, Torimoto Y and Li Q 2010 Mater. Lett. 64 1322 [15] Yuan X, Xu Y and He Y 2007 J. Alloys Compd. 441 251 [16] Jeevaratnam J, Glasser F P and Glasser L S D 1964 J. Am. Ceram. Soc. 47 105 [17] Lacerada M, Irvine J T S, Lachowski E E, Glasserand E P and West A R 1988 Trans. J. 87 191 [18] Hosono H, Hayashi K, Kajihara K, Sushko P V and Shluger A L 2009 Sol. Stat. Ion. 180 550 [19] Matsuishi S, Hayashi K, Hirano M and Hosono H 2005 J. Am. Chem. Soc. 127 12454 [20] Liu X L, Liu Y X, Yan D T, Zhu H C, Liu C G, Xu C S, Liu Y C and Wang X J 2012 J. Mater. Chem. 22 16839 [21] Bartl H and Scheller T 1970 Mineral. Monatshefte 35 547 [22] Christensen A N 1987 Acta Chem. Scand. 41a 110 [23] Strandbakke R, Kongshaug C, Haugsrud R and Norby T 2009 J. Phys. Chem. C 113 8938 [24] Lee D K, Kogel L, Ebbinghaus S G, Valov I, Wiemhoefer H D, Lerch M and Janek J 2009 Phys. Chem. Chem. Phys. 11 3105 [25] Janek J and Lee D K 2010 J. Korean Ceram. Soc. 47 99 [26] Li Q X, Hayashi K, Nishioka M, Kashiwagi H, Hirano M, Torimoto Y, Hosono H and Sadakata M 2002 Appl. Phys. Lett. 80 4259 [27] Labidi M, Labidi S, Ghemid S, Meradji H and El Haj Hassan F 2010 Phys. Scr. 82 045605 [28] Hosono H, Asada N and Abe Y 1990 J. Appl. Phys. 67 2840 [29] Dan W, Yuxue L, Changshan X, Yichun L, Guorui W and Xinghua L 2008 J. Rar. Eaths. 26 433 [30] Park Y J and Kim Y J 2008 Ceram. Inter. 34 1109 [31] Zhu H, Liu Y, Yan D, Bian H, Li S, Liu C, Xu C and Wang X 2014 Opt. Mater. 36 1771 [32] Singh V, Chakradhar R P S, Ledoux-Rak I, Badie L, Pelle F and Ivanova S 2009 J. Lumin. 129 1375 [33] Ju H, Su X, Xu S, Zhang Y, Deng D, Zhao S, Wang H, Wang B and Sun L 2009 Mater. Lett. 63 1275 [34] Lin Y, Tang Z, Zhang Z and Nan C 2003 J. Europ. Ceram. Soc. 23 175 [35] Kumar A S, Kumar R A, Balasundaraprabhu R, Senthil K, Kumar S R and Gunasekaran V 2015 Spectrochim. Acta A 134 283 [36] Rui W, Yushen Z, Jinchao S, Liang L and Yanling X 2011 J. Rar. Eaths 29 826 [37] Verma R K and Rai S B 2013 Chem. Phys. Lett. 559 71 [38] Park J, Kim G and Kim Y J 2013 Ceram. Inter. 39 S623 [39] Brika M G, Pan Y X and Liu G K 2011 J. Alloys Compd. 509 1452 [40] Murata T, Tanoue T, Iwasaki M, Morinaga K and Hase T 2005 J. Lumin. 114 207 [41] Meng L, Meng H, Gog W, Liu W and Zhang Z 2011 Thin Solid Films 519 7627 [42] Badr Y, Battisha I K, El Nahrawy A M S, Elouadi B and Kamal M 2011 New Journal of Glass and Ceramics 1 71 [43] Gu F., Wang S F, Lu M K, Zhou G J, Xu D and Yuan D R 2004 J. Phys. Chem. B 108 8119 [44] Khan Z R, Zulfequar M and Khan M S 2010 Mater. Sci. Eng. B 174 145 [45] Aranda J, Morenza J L, Esteve J and Codina J M 1984 Thin Solid Films 120 23 [46] Fadel M, Fayek S A, Abou-Helal M O, Ibrahium M M and Shakra A M 2009 J. Alloys Compd. 485 604 [47] Pankove J I 1971 Optical Process in Semiconductors (New York: Dover Publications) [48] Torris J, Cisneros J I, Gordillo G and Alvarez F 1996 Thin Solid Films 289 238 [49] Ali A I, Ammar A H and Abdel Moez A 2014 Superlatt. Microstruct. 65 285 [50] El mandouh Z El Sayed, Elmeleegi H A and Abdel Moez A 2014 Turk. J. Phys. 38 145 [51] Marquez E, Bernal-Oliva A M, Gonzalez-Leal J M, Prieto-Alcon R, Ledesma A, Jimenez-Garay R and Márti I 1999 Mater. Chem. Phys. 60 231 [52] M El-Nahass M, Ammar A H, Farag A A M, Atta A A and El-Zaidia E F M 2011 Sol. Stat. Sci. 13 596 [53] Djurisic A B and Li E H 1998 Opt. Commun. 157 72 [54] Ali A I, Son J Y, Ammar A H, Abdel Moez A and Kim Y S 2013 Results Phys. 3 167 [55] Ziabari A A and Ghodsi F E 2011 J. Alloys Compd. 509 8748 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|