Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047801    DOI: 10.1088/1674-1056/ac1e15
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons

Xiaotian Zhu(朱笑天)1, Bingheng Meng(孟兵恒)1, Dengkui Wang(王登魁)1,†, Xue Chen(陈雪)1, Lei Liao(廖蕾)2, Mingming Jiang(姜明明)3, and Zhipeng Wei(魏志鹏)1,‡
1 State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China;
2 State Key Laboratory for Chemo/Biosensing and Chemometrics, School of Physics and Electronics, Hunan University, Changsha 410082, China;
3 College of Science, Nanjing University of Aeronautics and Astronautics, Jiangsu 210016, China
Abstract  GaAs nanowires (NWs) are ideal materials for preparing near-infrared photodetectors owing to their high charge carrier mobility and direct band gap. Although the performance of GaAs NW photodetectors can be enhanced by surface passivation or doping, it still cannot meet the requirement for applications. In this paper we propose a method to greatly improve the performances of GaAs NW photodetectors by hot-hole injection via surface plasmon polaritons. In this case, the responsivity of a single GaAs NW photodetector is increased by a fact of 3.2 to 6.56 A· W-1 by attaching capsule-like Au nanoparticles to its surface. This research uses an efficient route to improve the NW photocurrent, which is also important for the development of a high-performance near-infrared NW photodetecor.
Keywords:  GaAs nanowire (NW)      capsule-like Au nanoparticles      photodetector      surface plasmon polariton  
Received:  02 June 2021      Revised:  09 August 2021      Accepted manuscript online:  17 August 2021
PACS:  78.67.Uh (Nanowires)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  52.77.-j (Plasma applications)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074018, 12074045, 61904017 and 11804335), the Developing Project of Science and Technology of Jilin Province, China (Grant No. 20200301052RQ), and the Project of Education Department of Jilin Province, China (Grant Nos. JJKH20200763KJ and JJKH20210831KJ).
Corresponding Authors:  Dengkui Wang, Zhipeng Wei     E-mail:  wccwss@fowmail.com;zpweicust@126.com

Cite this article: 

Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏) Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons 2022 Chin. Phys. B 31 047801

[1] Hijazi H, Monier G, Gil E, Trassoudaine A, Bougerol C, Leroux C, Castellucci D, Robert-Goumet C, Hoggan P E, Andre Y, Goktas N I, LaPierre R R and Dubrovskii V G 2019 Nano Lett. 19 4498
[2] Ejderha K, Duman S, Nuhoglu C, Urhan F and Turut A 2014 J. Appl. Phys. 116 234503
[3] Nakayama K, Tanabe K and Atwater H A 2008 Appl. Phys. Lett. 93 121904
[4] Luo Y, Yan X, Zhang J, Li B, Wu Y, Lu Q, Jin C, Zhang X and Ren X 2018 Nanoscale 10 9212
[5] Ali H, Zhang Y, Tang J, Peng K, Sun S, Sun Y, Song F, Falak A, Wu S, Qian C, Wang M, Zuo Z, Jin K, Sanchez A M, Liu H and Xu X 2018 Small 14 1704429
[6] Munshi A M, Dheeraj D L, Fauske V T, Kim D, Helvoort A T J, Fimland B and Weman H 2012 Nano Lett. 12 4570
[7] Takenaka M, Morii K, Sugiyama M, Nakano Y and Takagi S 2012 Opt. Express 20 8718
[8] Zhao T and Wu Z 2020 Chin. Phys. B 29 034101
[9] Li W, Rigel K, Liu C, Taskin A, Ando Y, Liao Z, Dressel M and Yan Y 2020 Chin. Phys. B 29 076801
[10] Li X, Wu L and Yang Y 2019 Acta Phys. Sin. 68 187103 (in Chinese)
[11] Li A, Zhang X, Liu F, Yan X and Liang L 2019 Acta Phys. Sin. 68 197801 (in Chinese)
[12] Chen Y, Xie J, Zhou X, Zhang C, Yang H and Li S 2019 Acta Phys. Sin. 68 237301 (in Chinese)
[13] Huang J and Luo L 2018 Adv. Optical Mater. 6 1701282
[14] Jung I, Kim M, Kwak M, Kim G, Jang M, Kim S M, Park D J and Park S 2018 Nat. Commun. 9 1010
[15] Bang S, Duong N T, Lee J, Cho Y H, Oh H M, Kim H, Yun S J, Park C H, Kwon M, Kim J, Kim J and Jeong M S 2018 Nano Lett. 18 2316
[16] Tamayo-Arriola J, Castellano E M and Bajo M M 2019 ACS Photonics 6 2816
[17] Zhu Y, Wei H, Yang P and Xu H 2012 Chin. Phys. Lett. 29 077302
[18] Zhong T and Zhang H 2020 Chin. Phys. B 29 094101
[19] Wang C, Yang X, Zang J, Chen Y, Lin C, Liu Z and Shan C 2020 Chin. Phys. B 29 058504
[20] Pescaglini A, Martin A, Cammi D, Juska G, Ronning C, Pelucchi E and Iacopino D 2014 Nano Lett. 14 6202
[21] Qi Z, Zhai Y, Wen L, Wang Q, Chen Q, Iqbal S, Chen G, Xu J and Tu Y 2017 Nanotechnology 28 275202
[22] Hosseini Z S, Bafrani H A, Naseri A and Moshfegh A Z 2019 Appl. Surf. Sci. 483 1110
[23] Wu J, Qiu C, Feng S, Yao T, Yan Y and Lin S 2020 Nanotechnology 31 105204
[24] Bedir Y, Mohy E A A and Hagar M 2020 Plasmonics 15 1377
[25] Chu S, Li D, Chang P and Lu J 2011 Nanoscale Res. Lett. 6 38
[26] Huh J, Yun H, Kim D, Munshi A M, Dheeraj D L, Kauko H, Helvoort A T J, Lee S, Fimland B and Weman H 2015 Nano Lett. 15 3709
[27] Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D and Fang X 2017 Adv. Funct. Mater. 27 1700264
[28] For instance, common GaAs based photodetector (400 nm-900 nm) has a responsivity of 0.45 A·W-1 at 850 nm.
[29] Dai X, Zhang S, Wang Z, Adamo G, Liu H, Huang Y, Couteau C and Soc C 2014 Nano Lett. 14 2688
[30] Manders J R, Lai T H, An Y, Xu W, Lee J, Kim D Y, Bosman G and So F 2014 Adv. Funct. Mater. 24 7205
[31] Chen X, Xia N, Yang Z, Gong F, Wei Z, Wang D, Tang J, Fang X, Fang D and Liao L 2018 Nanotechnology 29 095201
[32] Zhu X, Lin F, Chen X, Zhang Z, Chen X, Wang D, Tang J, Fang X, Fang D, Liao L and Wei Z 2020 Nanotechnology 31 444001
[33] Song K, Lee H, Lee M and Park J Y 2021 ACS Energy Lett. 6 1333
[34] Fathima N, Pradeep N and Balakrishnan J 2020 Optik 222 165332
[35] DuChene J, Tagliabue G, Welch A J, Cheng W and Atwater H A 2018 Nano Lett. 18 2545
[36] Batey J, Wright S L and DiMaria D J 1985 J. Appl. Phys. 57 484
[37] Zhu X, Lin F, Zhang Z, Chen X, Huang H, Wang D, Tang J, Fang X, Fang D, Ho J C, Liao L and Wei Z 2020 Nano Lett. 20 2654
[38] Chen S, Cao R, Chen X, Wu Q, Zeng Y, Gao S, Guo Z, Zhao J, Zhang M and Zhang H 2020 Adv. Mater. Interfaces 7 1902179
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[5] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[6] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[7] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[8] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[9] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[10] Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton
Huan Jiang(蒋欢), Xiang-Yu Cao(曹祥玉), Tao Liu(刘涛), Liaori Jidi(吉地辽日), and Sijia Li(李思佳). Chin. Phys. B, 2022, 31(10): 104101.
[11] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[12] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[13] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[14] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[15] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
No Suggested Reading articles found!