CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons |
Xiaotian Zhu(朱笑天)1, Bingheng Meng(孟兵恒)1, Dengkui Wang(王登魁)1,†, Xue Chen(陈雪)1, Lei Liao(廖蕾)2, Mingming Jiang(姜明明)3, and Zhipeng Wei(魏志鹏)1,‡ |
1 State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China; 2 State Key Laboratory for Chemo/Biosensing and Chemometrics, School of Physics and Electronics, Hunan University, Changsha 410082, China; 3 College of Science, Nanjing University of Aeronautics and Astronautics, Jiangsu 210016, China |
|
|
Abstract GaAs nanowires (NWs) are ideal materials for preparing near-infrared photodetectors owing to their high charge carrier mobility and direct band gap. Although the performance of GaAs NW photodetectors can be enhanced by surface passivation or doping, it still cannot meet the requirement for applications. In this paper we propose a method to greatly improve the performances of GaAs NW photodetectors by hot-hole injection via surface plasmon polaritons. In this case, the responsivity of a single GaAs NW photodetector is increased by a fact of 3.2 to 6.56 A· W-1 by attaching capsule-like Au nanoparticles to its surface. This research uses an efficient route to improve the NW photocurrent, which is also important for the development of a high-performance near-infrared NW photodetecor.
|
Received: 02 June 2021
Revised: 09 August 2021
Accepted manuscript online: 17 August 2021
|
PACS:
|
78.67.Uh
|
(Nanowires)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
52.77.-j
|
(Plasma applications)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074018, 12074045, 61904017 and 11804335), the Developing Project of Science and Technology of Jilin Province, China (Grant No. 20200301052RQ), and the Project of Education Department of Jilin Province, China (Grant Nos. JJKH20200763KJ and JJKH20210831KJ). |
Corresponding Authors:
Dengkui Wang, Zhipeng Wei
E-mail: wccwss@fowmail.com;zpweicust@126.com
|
Cite this article:
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏) Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons 2022 Chin. Phys. B 31 047801
|
[1] Hijazi H, Monier G, Gil E, Trassoudaine A, Bougerol C, Leroux C, Castellucci D, Robert-Goumet C, Hoggan P E, Andre Y, Goktas N I, LaPierre R R and Dubrovskii V G 2019 Nano Lett. 19 4498 [2] Ejderha K, Duman S, Nuhoglu C, Urhan F and Turut A 2014 J. Appl. Phys. 116 234503 [3] Nakayama K, Tanabe K and Atwater H A 2008 Appl. Phys. Lett. 93 121904 [4] Luo Y, Yan X, Zhang J, Li B, Wu Y, Lu Q, Jin C, Zhang X and Ren X 2018 Nanoscale 10 9212 [5] Ali H, Zhang Y, Tang J, Peng K, Sun S, Sun Y, Song F, Falak A, Wu S, Qian C, Wang M, Zuo Z, Jin K, Sanchez A M, Liu H and Xu X 2018 Small 14 1704429 [6] Munshi A M, Dheeraj D L, Fauske V T, Kim D, Helvoort A T J, Fimland B and Weman H 2012 Nano Lett. 12 4570 [7] Takenaka M, Morii K, Sugiyama M, Nakano Y and Takagi S 2012 Opt. Express 20 8718 [8] Zhao T and Wu Z 2020 Chin. Phys. B 29 034101 [9] Li W, Rigel K, Liu C, Taskin A, Ando Y, Liao Z, Dressel M and Yan Y 2020 Chin. Phys. B 29 076801 [10] Li X, Wu L and Yang Y 2019 Acta Phys. Sin. 68 187103 (in Chinese) [11] Li A, Zhang X, Liu F, Yan X and Liang L 2019 Acta Phys. Sin. 68 197801 (in Chinese) [12] Chen Y, Xie J, Zhou X, Zhang C, Yang H and Li S 2019 Acta Phys. Sin. 68 237301 (in Chinese) [13] Huang J and Luo L 2018 Adv. Optical Mater. 6 1701282 [14] Jung I, Kim M, Kwak M, Kim G, Jang M, Kim S M, Park D J and Park S 2018 Nat. Commun. 9 1010 [15] Bang S, Duong N T, Lee J, Cho Y H, Oh H M, Kim H, Yun S J, Park C H, Kwon M, Kim J, Kim J and Jeong M S 2018 Nano Lett. 18 2316 [16] Tamayo-Arriola J, Castellano E M and Bajo M M 2019 ACS Photonics 6 2816 [17] Zhu Y, Wei H, Yang P and Xu H 2012 Chin. Phys. Lett. 29 077302 [18] Zhong T and Zhang H 2020 Chin. Phys. B 29 094101 [19] Wang C, Yang X, Zang J, Chen Y, Lin C, Liu Z and Shan C 2020 Chin. Phys. B 29 058504 [20] Pescaglini A, Martin A, Cammi D, Juska G, Ronning C, Pelucchi E and Iacopino D 2014 Nano Lett. 14 6202 [21] Qi Z, Zhai Y, Wen L, Wang Q, Chen Q, Iqbal S, Chen G, Xu J and Tu Y 2017 Nanotechnology 28 275202 [22] Hosseini Z S, Bafrani H A, Naseri A and Moshfegh A Z 2019 Appl. Surf. Sci. 483 1110 [23] Wu J, Qiu C, Feng S, Yao T, Yan Y and Lin S 2020 Nanotechnology 31 105204 [24] Bedir Y, Mohy E A A and Hagar M 2020 Plasmonics 15 1377 [25] Chu S, Li D, Chang P and Lu J 2011 Nanoscale Res. Lett. 6 38 [26] Huh J, Yun H, Kim D, Munshi A M, Dheeraj D L, Kauko H, Helvoort A T J, Lee S, Fimland B and Weman H 2015 Nano Lett. 15 3709 [27] Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D and Fang X 2017 Adv. Funct. Mater. 27 1700264 [28] For instance, common GaAs based photodetector (400 nm-900 nm) has a responsivity of 0.45 A·W-1 at 850 nm. [29] Dai X, Zhang S, Wang Z, Adamo G, Liu H, Huang Y, Couteau C and Soc C 2014 Nano Lett. 14 2688 [30] Manders J R, Lai T H, An Y, Xu W, Lee J, Kim D Y, Bosman G and So F 2014 Adv. Funct. Mater. 24 7205 [31] Chen X, Xia N, Yang Z, Gong F, Wei Z, Wang D, Tang J, Fang X, Fang D and Liao L 2018 Nanotechnology 29 095201 [32] Zhu X, Lin F, Chen X, Zhang Z, Chen X, Wang D, Tang J, Fang X, Fang D, Liao L and Wei Z 2020 Nanotechnology 31 444001 [33] Song K, Lee H, Lee M and Park J Y 2021 ACS Energy Lett. 6 1333 [34] Fathima N, Pradeep N and Balakrishnan J 2020 Optik 222 165332 [35] DuChene J, Tagliabue G, Welch A J, Cheng W and Atwater H A 2018 Nano Lett. 18 2545 [36] Batey J, Wright S L and DiMaria D J 1985 J. Appl. Phys. 57 484 [37] Zhu X, Lin F, Zhang Z, Chen X, Huang H, Wang D, Tang J, Fang X, Fang D, Ho J C, Liao L and Wei Z 2020 Nano Lett. 20 2654 [38] Chen S, Cao R, Chen X, Wu Q, Zeng Y, Gao S, Guo Z, Zhao J, Zhang M and Zhang H 2020 Adv. Mater. Interfaces 7 1902179 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|