Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 037102    DOI: 10.1088/1674-1056/ac3070
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal

Yong Zhang(张勇)1,2, Xinliang Huang(黄新亮)2, Jinglei Zhang(张警蕾)2, Wenshuai Gao(高文帅)1,†, Xiangde Zhu(朱相德)2,‡, and Li Pi(皮雳)2
1 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
2 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
Abstract  The binary pnictide semimetals have attracted considerable attention due to their fantastic physical properties that include topological effects, negative magnetoresistance, Weyl fermions, and large non-saturation magnetoresistance. In this paper, we have successfully grown the high-quality V1-δSb2 single crystals by Sb flux method and investigated their electronic transport properties. A large positive magnetoresistance that reaches 477% under a magnetic field of 12 T at T = 1.8 K was observed. Notably, the magnetoresistance showed a cusp-like feature at the low magnetic fields and such feature weakened gradually as the temperature increased, which indicated the presence of a weak antilocalization effect (WAL). In addition, based upon the experimental and theoretical band structure calculations, V1-δSb2 is a research candidate for a flat band.
Keywords:  binary pnictide semimetals      vanadium vacancy      flat band      weak anti-localization  
Received:  17 September 2021      Revised:  08 October 2021      Accepted manuscript online:  18 October 2021
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  72.15.-v (Electronic conduction in metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2032214, U2032163, and 11904002), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017483), and the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QA15).
Corresponding Authors:  Wenshuai Gao, Xiangde Zhu     E-mail:  gwsh@ahu.edu.cn;xdzhu@hmfl.ac.cn

Cite this article: 

Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳) Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal 2022 Chin. Phys. B 31 037102

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X and Zhang S 2011 Rev. Mod. Phys. 83 1057
[3] Ando Y 2013 J. Phys. Soc. Jpn. 82 102001
[4] Ando Y and Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361
[5] Moore J E 2010 Nature 464 194
[6] Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X and and Xue Q K 2009 Phys. Rev. Lett. 103 266803
[7] Roushan P, Seo J, Parker C V, Hor Y S, Hsieh D, Qian D, Richardella A, Hasan M Z, Cava R J and Yazdani A 2009 Nature 460 1106
[8] Xu C, Chen J, Zhi G, Li Y, Dai J and Cao C 2016 Phys. Rev. B 93 195106
[9] Liu X Y, Wang J L, You W, Wang T T, Yang H Y, Jiao W H, Mao H Y, Zhang L, Cheng J and Li Y K 2017 Chin. Phys. Lett. 34 127501
[10] Wang H, Su H, Zhang J, Xia W, Lin Y, Liu X, Hou X, Yu Z, Yu N, Wang X, Zou Z, Wang Y, Liang Q, Zhen Y and Guo Y 2019 Phys. Rev. B 100 115127
[11] Peramaiyan G, Sankar R, Muthuselvam I P and Lee W L 2018 Sci. Rep. 8 6414
[12] Wang Y, Yu Q, Guo P, Liu K and Xia T 2016 Phys. Rev. B 94 041103
[13] Yuan Z, Lu H, Liu Y, Wang J and Jia S 2016 Phys. Rev. B 93 184405
[14] Wu D, Liao J, Yi W, Wang X, Li P, Weng H, Shi Y, Li Y, Luo J, Dai X and Fang Z 2016 Appl. Phys. Lett. 108 042105
[15] Leahy I A, Lin Y P, Siegfried P E, Treglia A C, Song J C W, Nandkishore R M and Lee M 2018 Proc. Natl. Acad. Sci. USA 115 10570
[16] Chen S, Lou Z, Zhou Y, Chen Q, Xu B, Wu C, Du J, Yang J, Wang H and Fang M 2021 Chin. Phys. Lett. 38 017202
[17] Luo Y, McDonald R D, Rosa P F, Scott B, Wakeham N, Ghimire N J, Bauer E D, Thompson J D and Ronning F 2016 Sci. Rep. 6 27294
[18] Li Y, Li L, Wang J, Wang T, Xu X, Xi C, Cao C and Dai J 2016 Phys. Rev. B 94 121115
[19] Shen B, Deng X, Kotliar G and Ni N 2016 Phys. Rev. B 93 195119
[20] Kumar N, Sun Y, Xu N, Manna K, Yao M, Suss V, Leermakers I, Young O, Forster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C and Shekhar C 2017 Nat. Commun. 8 1642
[21] Malki S and El Farh L 2020 Int. J. Thermophys. 41 58
[22] Failamani F, Broz P, Macció D, Puchegger S, Müller H, Salamakha L, Michor H, Grytsiv A, Saccone A, Bauer E, Giester G and Rogl P 2015 Intermetallics 65 94
[23] Harimohan V, Bharathi A, Babu P D, Rajaraman R and Sundar C S 2020 AIP Conf. Proc. 2265 030428
[24] Canfield P C 2020 Rep. Prog. Phys. 83 016501
[25] Wang V, Xu N, Liu J C, Tang G and Geng W 2021 Comput. Phys. Commun. 267 108033
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Malki S and EL Farh L 2019 Materials Today-Proceedings 13 991
[28] Havinga E E, Damsma H and Hokkeling P 1972 Journal of the Less Common Metals 27 169
[29] Armbrüster M, Schnelle W, Schwarz U and Grin Y 2007 Inorg. Chem. 46 6319
[30] Wang K, Graf D, Li L, Wang L and Petrovic C 2014 Sci. Rep. 4 7328
[31] Zhang C L, Yuan Z J, Jiang Q D, Tong B B, Zhang C, Xie X C and Jia S 2017 Phys. Rev. B 95 085202
[32] Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z K, Chen Y L, Schnelle W, Borrmann H, Grin Y, Felser C and Yan B H 2015 Nat. Phys. 11 645
[33] Zhang K, Du Y, Wang P, Wei L, Li L, Zhang Q, Qin W, Lin Z, Cheng B, Wang Y, Xu H, Fan X, Sun Z, Wan X and Zeng C 2020 Chin. Phys. Lett. 37 090301
[34] Chen Q, Zhou Y, Xu B, Lou Z, Chen H, Chen S, Wu C, Du J, Wang H, Yang J and Fang M 2021 Chin. Phys. Lett. 38 087501
[35] Hou Z, Wang Y, Liu E, Zhang H, Wang W and Wu G 2015 Appl. Phys. Lett. 107 202103
[36] Zhang J, Hou Z, Zhang C, Chen J, Li P, Wen Y, Zhang Q, Wang W and Zhang X 2019 Appl. Phys. Lett. 115 172407
[37] Hou Z, Wang Y, Xu G, Zhang X, Liu E, Wang W, Liu Z, Xi X, Wang W and Wu G 2015 Appl. Phys. Lett. 106 102102
[38] Wang X, Du Y, Dou S and Zhang C 2012 Phys. Rev. Lett. 108 266806
[39] Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q and Lu L 2010 Phys. Rev. Lett. 105 176602
[40] Lu H Z and Shen S 2011 Phys. Rev. B 84 125138
[41] Liu W E, Hankiewicz E M and Culcer D 2017 Materials 10 807
[42] Bergmann G 1984 Phys. Rep. 107 1
[43] Kim Y S, Brahlek M, Bansal N, Edrey E, Kapilevich G A, Iida K, Tanimura M, Horibe Y, Cheong S W and Oh S 2011 Phys. Rev. B 84 073109
[44] Shrestha K, Graf D, Marinova V, Lorenz B and Chu C W 2017 J. Appl. Phys. 122 145901
[45] He H, Wang G, Zhang T, Sou I K, Wong G K L, Wang J, Lu H, Shen S and Zhang F 2011 Phys. Rev. Lett. 106 166805
[46] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
[47] Xu G, Wang W, Zhang X, Du Y, Liu E, Wang S, Wu G, Liu Z and Zhang X X 2014 Sci. Rep. 4 5709
[48] Wang W, Du Y, Xu G, Zhang X, Liu E, Liu Z, Shi Y, Chen J, Wu G and Zhang X 2013 Sci. Rep. 3 2181
[49] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[50] Blundell S and Thouless D 2003 Am. J. Phys 71 94
[51] Kittel C 2004 Introduction to Solid State Physics (Chichester:John Wiley & Sons) p. 301
[52] Tari A 2003 The Specific Heat of Matter at Low Temperatures (London:Imperial College Press) pp. 60-150
[1] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[2] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[3] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[4] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[5] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[6] Surface Majorana flat bands in j=3/2 superconductors with singlet-quintet mixing
Jiabin Yu(于家斌), Chao-Xing Liu(刘朝星). Chin. Phys. B, 2020, 29(1): 017402.
[7] Collapses-revivals phenomena induced by weak magnetic flux in diamond chain
Na-Na Chang(常娜娜), Wen-Quan Jing(景文泉), Yu Zhang(张钰), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2020, 29(1): 010306.
[8] Unconventional chiral d-wave superconducting state in strained graphene
Feng Xu(徐峰), Lei Zhang(张磊). Chin. Phys. B, 2019, 28(11): 117403.
[9] Tunneling dynamics of bosons in the diamond lattice chain
Na-Na Chang(常娜娜), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2018, 27(10): 105203.
[10] Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals
Yi-Xin Zong(宗易昕), Jian-Bai Xia(夏建白), Hai-Bin Wu(武海斌). Chin. Phys. B, 2017, 26(4): 044208.
No Suggested Reading articles found!