Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050305    DOI: 10.1088/1674-1056/ac2f34
GENERAL Prev   Next  

Analysis and improvement of verifiable blind quantum computation

Min Xiao(肖敏) and Yannan Zhang(张艳南)
1 College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 Chongqing Key Laboratory of Cyberspace and Information Security, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  In blind quantum computation (BQC), a client with weak quantum computation capabilities is allowed to delegate its quantum computation tasks to a server with powerful quantum computation capabilities, and the inputs, algorithms and outputs of the quantum computation are confidential to the server. Verifiability refers to the ability of the client to verify with a certain probability whether the server has executed the protocol correctly and can be realized by introducing trap qubits into the computation graph state to detect server deception. The existing verifiable universal BQC protocols are analyzed and compared in detail. The XTH protocol (proposed by Xu Q S, Tan X Q, Huang R in 2020), a recent improvement protocol of verifiable universal BQC, uses a sandglass-like graph state to further decrease resource expenditure and enhance verification capability. However, the XTH protocol has two shortcomings: limitations in the coloring scheme and a high probability of accepting an incorrect computation result. In this paper, we present an improved version of the XTH protocol, which revises the limitations of the original coloring scheme and further improves the verification ability. The analysis demonstrates that the resource expenditure is the same as for the XTH protocol, while the probability of accepting the wrong computation result is reduced from the original minimum (0.866)d* to (0.819)d*, where d* is the number of repeated executions of the protocol.
Keywords:  verifiable blind quantum computation      universal blind quantum computation      measurement-based quantum computation  
Received:  05 July 2021      Revised:  09 October 2021      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Corresponding Authors:  Min Xiao,E-mail:xiaomin@cqupt.edu.cn     E-mail:  xiaomin@cqupt.edu.cn
About author:  2021-10-13

Cite this article: 

Min Xiao(肖敏) and Yannan Zhang(张艳南) Analysis and improvement of verifiable blind quantum computation 2022 Chin. Phys. B 31 050305

[1] Shor P W 2014 In Proceedings of 35th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, November 20, 1994 Los Alamitos, CA, USA, pp. 124-134
[2] Shor P W 1999 Siam. Rev. 41 303
[3] Grover L K 1996 arXiv:9607024[quant-ph]
[4] Morimae T and Fuji K 2013 Phys. Rev. A 87 3393
[5] Broadbent A, Fitzsimons J and Kashefi E 2009 0th Annual IEEE Symposium on Foundations of Computer Science (Atlanta:IEEE) p. 517
[6] Morimae T and Fuji K 2013 Phys. Rev. Lett. 111 47
[7] Li Q,Chan W H, Wu C H and Wen Z H 2014 Phys. Rev. A 89 2748
[8] Morimae T 2014 Phys. Rev. A 89 4085
[9] Hayashi M and Morimae T 2014 Phys. Rev. Lett. 115 220502
[10] McKague M 2016 Theor. Comput. 12 1
[11] Morimae T 2016 Phys. Rev. A 94 042301
[12] Fitzsimons J F and Kashefi E 2017 Phys. Rev. A 96 012303
[13] Kashefi E and Wallden P 2017 J. Phys. A: Math. Theor. 50 145306
[14] Xu Q S, Tan X Q and Huang R 2020 Entropy 22 996
[15] Childs A M 2005 Quantum Inf. & Comput. 5 456
[16] Arrighi P and Salvail L 2006 Int. J. Quantum Inf. 4 883
[17] Xu H R 2014 arXiv:1410.7054[quant-ph]
[18] Barz S, Kashefi E, Broadbent A, Fitzsimons J F, Zeilinger A and Walther, P 2012 APS March Meeting 2012, Monday-Friday, February 27-March 2, 2012, Boston, Massachusetts, p. T30-010
[19] Barz S, Fitzsimons J F, Kashefi E and Walther P 2013 Nat. Phys. 9 727
[20] Greganti C, Roehsner M C, Barz S, Morimae T and Walther P 2016 New J. Phys. 18 013020
[21] Huang H L, Zhao Q, Ma X, Liu C, Su Z E, Wang X L, Pan J W, Ma X F, Li L, Liu N L, Sanders B C and Lu C Y 2017 Phys. Rev. Lett. 119 050503
[22] Morimae T and Fujii K 2006 Nat. Commun. 3 1036
[23] Xiao M, Liu L and Song X L 2018 Quantum Inf. Process. 24 63
[24] Takeuchi Y, Fujii K, Ikuta R, Yamamoto T and Imoto N 2016 Phys. Rev. A 93 052307
[25] Chien C H, Meter R V and Kuo S Y 2015 Acm J. Emerg. Tech. Com. 12 1
[26] Raussendorf R, Harrington J and Goyal K 2007 New J. Phys. 9 199
[27] Fitzsimons J F 2017 npj Quantum Inf. 3 11
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[3] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[4] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[5] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[6] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[7] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[8] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[9] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[10] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[11] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[12] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[13] Optical scheme to demonstrate state-independent quantum contextuality
Ya-Ping He(何亚平), Deng-Ke Qu(曲登科), Lei Xiao(肖磊), Kun-Kun Wang(王坤坤), and Xiang Zhan(詹翔). Chin. Phys. B, 2022, 31(3): 030305.
[14] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[15] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
No Suggested Reading articles found!