Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048101    DOI: 10.1088/1674-1056/ac272b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Butt-joint regrowth method by MOCVD for integration of evanescent wave coupled photodetector and multi-quantum well semiconductor optical amplifier

Feng Xiao(肖峰)1,2, Qin Han(韩勤)1,2,†, Han Ye(叶焓)1, Shuai Wang(王帅)1, Zi-Qing Lu(陆子晴)1,2, and Fan Xiao(肖帆)1,2
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We have realized integration of evanescent wave coupled photodetector (ECPD) and multi-quantum well (MQW) semiconductor optical amplifier (SOA) on MOCVD platform by investigating butt-joint regrowth method of thick InP/InGaAsP waveguides to deep etched SOA mesas. The combination of inductively coupled plasma etching and wet chemical etching technique has been studied to define the final mesa shape before regrowth. By comparing the etching profiles of different non-selective etchants, we have obtained a controllable non-reentrant mesa shape with smooth sidewall by applying one step 2HBr:2H3PO4:K2Cr2O7 wet etching. A high growth temperature of 680 ℃ is found helpful to enhance planar regrowth. By comparing the growth morphologies and simulating optical transmission along different directions, we determined that waveguides should travel across the regrowth interface along the [110] direction. The relation between growth rate and mask design has been extensively studied and the result can provide an important guidance for future mask design and vertical alignment between the active and passive cores. ECPD-SOA integrated device has been successfully achieved by this method without further regrowth steps and provided a responsivity of 7.8 A/W. The butt-joint interface insertion loss is estimated to be 1.05 dB/interface.
Keywords:  butt-joint regrowth      etching profile      non-reentrant mesa      photonic integration  
Received:  08 June 2021      Revised:  02 September 2021      Accepted manuscript online:  16 September 2021
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2020YFB1805701), the National Natural Foundation of China (Grant Nos. 61934003, 61635010, and 61674136), and Beijing Natural Science Foundation, China (Grant No. 4194093).
Corresponding Authors:  Qin Han     E-mail:  hanqin@semi.ac.cn

Cite this article: 

Feng Xiao(肖峰), Qin Han(韩勤), Han Ye(叶焓), Shuai Wang(王帅), Zi-Qing Lu(陆子晴), and Fan Xiao(肖帆) Butt-joint regrowth method by MOCVD for integration of evanescent wave coupled photodetector and multi-quantum well semiconductor optical amplifier 2022 Chin. Phys. B 31 048101

[1] Borsato Cunha M S, Lima E S, Andriolli N, Spadoti D H, Contestabile G and Arismar Cerqueira S Jr. 2021 IEEE J. Sel. Top. Quantum Electron. 27 6100308
[2] Tonning P L and Heck M J R 2020 J. Lightwave Technol. 38 5526
[3] Yagi H, Kaneko T, Kono N, Yoneda Y, Uesaka K, Ekawa M, Takechi M and Shoji H 2018 IEEE J. Sel. Top. Quantum Electron. 24 6100411
[4] Kish F, Lal V, Evans P, Corzine S W, Ziari M, Butrie T, Reffle M, Tsai H, Dentai A, Pleumeekers J, Missey M, Fisher M, Murthy S, Salvatore R, Samra P, Demars S, Kim N, James A, Hosseini A, Studenkov P, et al. 2018 IEEE J. Sel. Top. Quantum Electron. 24 6100120
[5] Augustin L M, Santos R, Haan E d, Kleijn S, Thijs P J A, Latkowski S, Zhao D, Yao W, Bolk J, Ambrosius H, Mingaleev S, Richter A, Bakker A and Korthorst T 2018 IEEE J. Sel. Top. Quantum Electron. 24 6100210
[6] Arafin S and Coldren L A 2018 IEEE J. Sel. Top. Quantum Electron. 24 6100612
[7] Barbarin Y, M Bente E A J, de Vries T, den Besten J H, van Veldhoven P J, Sander-Jochem M J H, Smalbrugge E, van Otten F W M, Geluk E J, Heck M J R, Leijtens X J M, van der Tol J G M, Karouta F, Oei Y S, Nötzel R and Smit M K 2005 Proceedings of the 10th Annual Symposium IEEE/LEOS Benelux, December 1-2, 2004, Mons, Belgium, p. 89
[8] Kitatani T, Shinoda K, Tsuchiya T, Sato H, Ouchi K, Uchiyama H, Tsuji S and Aoki M 2004 16th IPRM. 2004 International Conference on Indium Phosphide and Related Materials, May 31-June 4, 2004, Kagoshima, Japan, p. 480
[9] Kulkova I V, Kadkhodazadeh S, Kuznetsova N, Huck A, Semenova E S and Yvind K 2014 J. Cryst. Growth 402 243
[10] Gibis R, Kizuki H, Albrecht P, Harde P, Urmann G, Kaiser R and Kunzel H 2000 J. Cryst. Growth 209 463
[11] Zilko J L, Segner B P, Chakrabarti U K, Logan R A, Lopata J, Vanharen D L, Long J A and McCrary V R 1991 J. Cryst. Growth 109 264
[12] Nakai K, Sanada T and Yamakoshi S 1988 J. Cryst. Growth 93 248
[13] Huang R T, Jiang C L, Appelbaum A, Renner D and Zehr S W 1990 J. Electron. Mater. 19 1313
[14] Lee B T, Logan R A and Chu S N G 1993 J. Cryst. Growth 130 287
[15] Karlicek R F, Coblentz D L, Logan R A, Hayes T R, Pawelek R and Byrne E K 1993 J. Cryst. Growth 131 204
[16] Cheng L, Fan J, Janssen D, Guo D, Chen X, Towner F J and Choa F S 2012 J. Electron. Mater. 41 506
[17] Notten P H L, Kelly J J and Kuiken H K 1986 J. Electrochem. Soc. 133 1226
[18] Fang R Y, Bertone D, Morello G and Meliga M 1997 J. Electrochem. Soc. 144 3940
[19] Shinoda K, Taike A, Sato H and Uchiyama H 2003 J. Electrochem. Soc. 150 G117
[20] Lourdudoss S, Messmer E R, Kjebon O and Landgren G 1995 J. Cryst. Growth 152 105
[21] Nordell N and Borglind J 1992 Appl. Phys. Lett. 61 22
[22] Van Caenegem T, Moerman I and Demeester P 1997 Prog. Cryst. Growth Charact. Mater. 35 263
[1] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[2] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[3] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[4] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[5] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[6] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[7] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[8] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[9] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[10] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[11] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[12] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[13] Degradation and its fast recovery in a-IGZO thin-film transistors under negative gate bias stress
Jianing Guo(郭佳宁), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2021, 30(11): 118102.
[14] Effect of nitrogen gas flow and growth temperature on extension of GaN layer on Si
Jian-Kai Xu(徐健凯), Li-Juan Jiang(姜丽娟), Qian Wang(王茜), Quan Wang(王权), Hong-Ling Xiao(肖红领), Chun Feng(冯春), Wei Li(李巍), and Xiao-Liang Wang(王晓亮). Chin. Phys. B, 2021, 30(11): 118101.
[15] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
No Suggested Reading articles found!