Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 128105    DOI: 10.1088/1674-1056/ac9823
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress

Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生)
School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
Abstract  The negative gate bias stress (NBS) reliability of n-type polycrystalline silicon (poly-Si) thin-film transistors (TFTs) with a distinct defective grain boundary (GB) in the channel is investigated. Results show that conventional NBS degradation with negative shift of the transfer curves is absent. The on-state current is decreased, but the subthreshold characteristics are not affected. The gate bias dependence of the drain leakage current at Vds of 5.0 V is suppressed, whereas the drain leakage current at Vds of 0.1 V exhibits obvious gate bias dependence. As confirmed via TCAD simulation, the corresponding mechanisms are proposed to be trap state generation in the GB region, positive-charge local formation in the gate oxide near the source and drain, and trap state introduction in the gate oxide.
Keywords:  negative bias stress      poly-Si      thin-film transistor      grain boundary  
Received:  05 August 2022      Revised:  29 September 2022      Accepted manuscript online:  07 October 2022
PACS:  81.05.Gc (Amorphous semiconductors)  
  81.05.Ea (III-V semiconductors)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971299 and 61974101), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20201201), the Fund from Suzhou Science and Technology Bureau (Grant No. SYG201933), and the Fund from the State Key Laboratory of ASIC and System, Fudan University (Grant No. 2021KF005).
Corresponding Authors:  Dongli Zhang     E-mail:  dongli_zhang@suda.edu.cn

Cite this article: 

Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生) Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress 2022 Chin. Phys. B 31 128105

[1] Ram M S and Abdi D B 2016 IEEE J. Electron Dev. Soc. 4 480
[2] Kimura M, Inoue S, Shimoda T and Eguchi T 2001 J. Appl. Phys. 89 596
[3] Kimura M and Dimitriadis C A 2011 IEEE Trans. Electron Dev. 58 1748
[4] Walker P M, Mizuta H, Uno S, Furuta Y and Hasko D G 2004 IEEE Trans. Electron Dev. 51 212
[5] Liang N, Zhang D, Wang M, Wang H, Yu Y and Qi D 2021 IEEE Trans. Electron Dev. 68 550
[6] Hu C, Wang M, Zhang B and Wong M 2009 IEEE Trans. Electron Dev. 56 587
[7] Zhang D, Wang M, Wang H and Yang Y 2017 IEEE Trans. Electron Dev. 64 4363
[8] Han C, Liu Y, Liu Y, Chen Y, Wang L and Chen R 2019 Chin. Phys. B 28 088502
[9] Lin H C, Chang K H and Huang T Y 2009 IEEE Trans. Electron Dev. 56 2664
[10] Yoshida T, Yoshino K, Takei M, Hara A, Sasaki N and Tsuchiya T 2003 IEEE Inter. Electron Dev. Meeting p. 8.8.1.
[11] Meng Z, Wang M and Wong M 2000 IEEE Trans. Electron Dev. 47 404
[12] Zhang D and Wong M 2005 J. Soc. Inf. Display 13 815
[13] Kasakawa T, Tabata H, Onodera R, Kojima H, Kimura M, Hara H and Inoue S 2011 Solid-State Electr. 56 207
[14] Zhang M, Wang M, Lu X, Wong M and Kwok H S 2012 IEEE Trans. Electron Dev. 59 1730
[15] Xue M, Wang M, Zhu Z, Zhang D and Wong M 2007 IEEE Trans. Electron Dev. 54 225
[16] Silvaco, ATLAS User's Manual
[17] Zafar S 2005 J. Appl. Phys. 97 103709
[18] Chen C Y, Lee J W, Wang S D, Shieh M S, Lee P H, Chen W C, Lin H Y, Yeh K L and Lei T F 2006 IEEE Trans. Electron Dev. 53 2993
[19] Park J, Trung N D, Kim Y S, Kim J H, Park K and Kim H S 2016 J. Electroceramics 36 135
[20] Zhang D, Wang M, Wang H and Yang Y 2017 IEEE Trans. Electron Dev. 64 4363
[21] Zhang D, Wang M, Wang H and Shan Q 2016 IEEE Trans. Electron Dev. 63 1572
[1] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[2] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[3] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[4] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[5] Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors
Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰). Chin. Phys. B, 2021, 30(9): 097402.
[6] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[7] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[8] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[9] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[10] Degradation and its fast recovery in a-IGZO thin-film transistors under negative gate bias stress
Jianing Guo(郭佳宁), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2021, 30(11): 118102.
[11] 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets
Lizhong Zhao(赵利忠), Xuefeng Zhang(张雪峰), Mi Yan(严密), Zhongwu Liu(刘仲武), and Jean-Marc Greneche. Chin. Phys. B, 2021, 30(1): 013302.
[12] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[13] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[14] A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors
Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生). Chin. Phys. B, 2020, 29(11): 118101.
[15] Negative gate bias stress effects on conduction and low frequency noise characteristics in p-type poly-Si thin-film transistors
Chao-Yang Han(韩朝阳), Yuan Liu(刘远), Yu-Rong Liu(刘玉荣), Ya-Yi Chen(陈雅怡), Li Wang(王黎), Rong-Sheng Chen(陈荣盛). Chin. Phys. B, 2019, 28(8): 088502.
No Suggested Reading articles found!