INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Suppression of ion migration in perovskite materials by pulse-voltage method |
Xue-Yan Wang(王雪岩)1,2,3,†, Hu Wang(王虎)2,3,5,†, Luo-Ran Chen(陈烙然)2,3,5, Yu-Chuan Shao(邵宇川)2,3,4,5,‡, and Jian-Da Shao(邵建达)1,2,3,4,5,§ |
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 2 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 3 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 4 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; 5 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Hybrid halide perovskites have great potential for applications in optoelectronic devices. However, the typical ion migration in perovskite could lead to the non-repeatability of electrical measurement, instability of material, and degradation of device performance. The basic current-voltage behavior of perovskite materials is intricate due to the mixed electronic-ionic characteristic, which is still poorly understood in these semiconductors. Developing novel measurement schematic is a promising solution to obtain the intrinsic electrical performance without the interference of ion migration. Herein, we explore the pulse-voltage (PV) method on methylammonium lead tribromide single crystals to protect the device from the ion migration. A guideline is summarized through the analysis of measurement history and condition parameters. The influence of the ion migration on current-voltage measurement, such as repeatability and hysteresis loop, is under controlled. An application of the PV method is demonstrated on the activation energy of conductivity. The abruption of activation energy still exists near the phase transition temperature despite the ion migration is excluded by the PV method, introducing new physical insight on the current-voltage behavior of perovskite materials. The guideline on PV method will be beneficial for measuring halide perovskite materials and developing optoelectronic applications with new technique schematic.
|
Received: 30 July 2021
Revised: 03 September 2021
Accepted manuscript online: 08 September 2021
|
PACS:
|
81.70.-q
|
(Methods of materials testing and analysis)
|
|
84.37.+q
|
(Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))
|
|
81.05.Fb
|
(Organic semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61805263) and Shanghai Sailing Program, China (Grant No. 18YF1426400). |
Corresponding Authors:
Yu-Chuan Shao, Jian-Da Shao
E-mail: shaoyuchuan@siom.ac.cn;jdshao@siom.ac.cn
|
Cite this article:
Xue-Yan Wang(王雪岩), Hu Wang(王虎), Luo-Ran Chen(陈烙然), Yu-Chuan Shao(邵宇川), and Jian-Da Shao(邵建达) Suppression of ion migration in perovskite materials by pulse-voltage method 2021 Chin. Phys. B 30 118104
|
[1] Jena A K, Kulkarni A and Miyasaka T 2019 Chem. Rev. 119 3036 [2] Park N G 2015 Mater. Today 18 65 [3] Igbari F, Wang Z K and Liao L S 2019 Adv. Energy Mater. 9 1803150 [4] Wei H T and Huang J S 2019 Nat. Commun. 10 1066 [5] Cao Z L, Hu F R, Man Z Q, Zhang C F, Zhang W H, Wang X Y and Xiao M 2020 Chin. Phys. Lett. 37 127801 [6] Li Y, Shi Z F, Li X and Shan C X 2019 Chin. Phys. B 28 17803 [7] Zhao Y, Li C L and Shen L 2018 Chin. Phys. B 27 127806 [8] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 [9] Xiao Z G, Yuan Y B, Shao Y C, Wang Q, Dong Q F, Bi C, Sharma P, Gruverman A and Huang J S 2015 Nat. Mater. 14 193 [10] Eames C, Frost J M, Barnes P R F, O'Regan B C, Walsh A and Islam M S 2015 Nat. Commun. 6 7497 [11] Zhang T, Hu C and Yang S H 2020 Small Methods 4 1900552 [12] Xiao X, Dai J, Fang Y J, Zhao J J, Zheng X P, Tang S, Rudd P N, Zeng X C and Huang J S 2018 ACS Energy Lett. 3 684 [13] Frost J M and Walsh A 2016 Acc. Chem. Res. 49 528 [14] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Grätzel M 2017 Science 358 768 [15] Cho H, Kim Y H, Wolf C, Lee H D and Lee T W 2018 Adv. Mater. 30 1704587 [16] Chen B, Rudd P N, Yang S, Yuan Y B and Huang J S 2019 Chem. Soc. Rev. 48 3842 [17] Lin Y, Bai Y, Fang Y J, Wang Q, Deng Y H and Huang J S 2017 ACS Energy Lett. 2 1571 [18] Xiao X, Dai J, Fang Y J, Zhao J J, Zheng X P, Tang S, Rudd P N, Zeng X C and Huang J S 2018 ACS Energy Lett. 3 684 [19] Yang F, Zuo W W, Liu H, Song J, Liu H R, Li J M and Jain S M 2019 Org. Electron. 75 105387 [20] Wang Y, Tian Y, Luo Y X, Yang J M, Cheng L P, Wu H Y, Tang J X and Li Y Q 2020 Org. Electron. 86 105919 [21] Cho J, DuBose J T, Le A N T and Kamat P V 2020 ACS Mater. Lett. 2 565 [22] Shao Y C, Fang Y J, Li T, Wang Q, Dong Q F, Deng Y H, Yuan Y B, Wei H T, Wang M Y, Gruverman A, Shield J and Huang J S 2016 Energy Environ. Sci. 9 1752 [23] Musiienko A, Moravec P, Grill R, Praus P, Vasylchenko I, Pekarek J, Tisdale J, Ridzonova K, Belas E, Landová L, Hu B, Lukosi E and Ahmadi M 2019 Energy Environ. Sci. 12 1413 [24] Lampert M A 1956 Phys. Rev. 103 1648 [25] Sawa A 2008 Mater. Today 11 28 [26] Xiao Z G and Huang J 2016 Adv. Electron. Mater. 2 1600100 [27] Le Corre V M, Duijnstee E A, El Tambouli O, Ball J M, Snaith H J, Lim J and Koster L J A 2021 ACS Energy Lett. 6 1087 [28] Saidaminov M I, Abdelhady A L, Murali B, Alarousu E, Burlakov V M, Peng W, Dursun I, Wang L F, He Y, Maculan G, Goriely A, Wu T, Mohammed O F and Bakr O M 2015 Nat. Commun. 6 7586 [29] Yuan Y B, Chae J, Shao Y C, Wang Q, Xiao Z G, Centrone A and Huang J S 2015 Adv. Energy Mater. 5 1500615 [30] Li C, Tscheuschner S, Paulus F, Hopkinson P E, Kießling J, Köhler A, Vaynzof Y and Huettner S 2016 Adv. Mater. 28 2446 [31] Lv F Z, Zhong T T, Qin Y F, Qin H J, Wang W F, Liu F C and Kong W J 2021 Nanomaterials 11 1361 [32] Sajedi Alvar M, Blom P W M and Wetzelaer G J A H 2020 Nat. Commun. 11 4023 [33] Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K and Grätzel M 2015 Energy Environ. Sci. 8 995 [34] Xing J, Wang Q, Dong Q F, Yuan Y B, Fang Y J and Huang J S 2016 Phys. Chem. Chem. Phys. 18 30484 [35] Li C, Guerrero A, Zhong Y, Gräser A, Luna C A M, Köhler J, Bisquert J, Hildner R and Huettner S 2017 Small 13 1701711 [36] Cao X B, Li Y H, Li C, Fang F, Yao Y W, Cui X and Wei J Q 2016 J. Phys. Chem. C 120 22784 [37] Lan C, Zou H, Wang L, Zhang M, Pan S, Ma Y, Qiu Y, Wang Z L and Lin Z 2020 Adv. Mater. 32 2005481 [38] Duijnstee E A, Ball J M, Le Corre V M, Koster L J A, Snaith H J and Lim J 2020 ACS Energy Lett. 5 376 [39] Yuan Y B, Wang Q, Shao Y C, Lu H D, Li T, Gruverman A and Huang J S 2016 Adv. Energy Mater. 6 1501803 [40] Fang H H, Adjokatse S, Wei H T, Yang J, Blake G R, Huang J S, Even J and Loi M A 2016 Sci. Adv. 2 e1600534 [41] Wei H T, Fang Y J, Mulligan P, Chuirazzi W, Fang H H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L and Huang J S 2016 Nat. Photon. 10 333 [42] Pan W C, Wu H D, Luo J J, Deng Z Z, Ge C, Chen C, Jiang X W, Yin WJ, Niu G D, Zhu L J, Yin L X, Zhou Y, Xie Q, Ke X X, Sui M L and Tang J 2017 Nat. Photon. 11 726 [43] Yang T Y, Gregori G, Pellet N, Grätzel M and Maier J 2015 Angew. Chemie Int. Ed. 54 7905 [44] Huang Q, Lynn J, Erwin R, Santoro A, Dender D, Smolyaninova V, Ghosh K and Greene R 2000 Phys. Rev. B 61 8895 [45] Ni N, Nandi S, Kreyssig A, Goldman A I, Mun E D, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 014523 [46] Kuwahara H, Tomioka Y, Moritomo Y, Asamitsu A, Kasai M, Kumai R and Tokura Y 1996 Science 272 80 [47] Wang K H, Li L C, Shellaiah M and Sun K W 2017 Sci. Rep. 7 1 [48] Bari M, Bokov A A and Ye Z G 2021 J. Mater. Chem. C 9 3096 [49] Liu Y C, Zhang Y X, Yang Z, Cui J, Wu H D, Ren X D, Zhao K, Feng J S, Tang J, Xu Z and Liu S Z Frank 2020 Adv. Opt. Mater. 8 2000814 [50] Duijnstee E A, Le Corre V M, Johnston M B, Koster L J A, Lim J and Snaith H J 2021 Phys. Rev. Appl. 15 014006 [51] Mahapatra A, Parikh N, Kumari H, Pandey M K, Kumar M, Prochowicz D, Kalam A, Tavakoli M M and Yadav P 2020 J. Appl. Phys. 127 185501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|