Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 080503    DOI: 10.1088/1674-1056/ab96a7
GENERAL Prev   Next  

Electrical properties of m×n cylindrical network

Zhi-Zhong Tan(谭志中)1, Zhen Tan(谭震)2
1 Department of Physics, Nantong University, Nantong 226019, China;
2 School of Information Science and Technology, Nantong University, Nantong 226019, China
Abstract  

We consider the problem of electrical properties of an m×n cylindrical network with two arbitrary boundaries, which contains multiple topological network models such as the regular cylindrical network, cobweb network, globe network, and so on. We deduce three new and concise analytical formulae of potential and equivalent resistance for the complex network of cylinders by using the RT-V method (a recursion-transform method based on node potentials). To illustrate the multiplicity of the results we give a series of special cases. Interestingly, the results obtained from the resistance formulas of cobweb network and globe network obtained are different from the results of previous studies, which indicates that our research work creates new research ideas and techniques. As a byproduct of the study, a new mathematical identity is discovered in the comparative study.

Keywords:  cylindrical network      complex boundaries      RT-V method      electrical properties      Laplace equation  
Received:  26 February 2020      Revised:  18 May 2020      Accepted manuscript online: 
PACS:  05.50.+q (Lattice theory and statistics)  
  84.30.Bv (Circuit theory)  
  89.20.Ff (Computer science and technology)  
  02.10.Yn (Matrix theory)  
Fund: 

Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161278).

Corresponding Authors:  Zhi-Zhong Tan     E-mail:  tanz@ntu.edu.cn

Cite this article: 

Zhi-Zhong Tan(谭志中), Zhen Tan(谭震) Electrical properties of m×n cylindrical network 2020 Chin. Phys. B 29 080503

[1] Bulgakov E N, Maksimov D N and Sadreev A F 2005 Phys. Rev. E 71 046205
[2] McGurn A R 2000 Phys. Rev. B 61 13235
[3] Albert V V, Glazman L I and Jiang L 2015 Phys. Rev. Lett. 114 173902
[4] Melnikov A V, Shuba M and Lambin P 2018 Phys. Rev. E 97 043307
[5] Barabási A L, Albert R and Jeong H 1999 Physica A 272 173
[6] Cserti J 2000 Am. J. Phys. 68 896
[7] Koutschan C 2013 J. Phys. A:Math. Theor. 46 125005
[8] Joyce G S 2017 J. Phys. A:Math. Theor. 50 425001
[9] Ge D B and Yan Y B 2011 Finite Difference Time Domain Method of Electromagnetic Wave (Xi'an:Xidian University Press) p. 10(in Chinese)
[10] Borges L and Daripa P 2001 J. Comput. Phys. 169 151
[11] Lu J J, Wu X P and Klaus S 2009 Prog. Geophys. 24 154(in Chinese)
[12] Klein D J and Randić M 1993 J. Math. Chem. 12 81
[13] Chen H Y and Zhang F J 2008 J. Math. Chem. 44 405
[14] Xiao W J and Gutman I 2003 Theor. Chem. Acc. 110 284
[15] Yang Y J and Klein D J 2013 Disc. Appl. Math. 161 2702
[16] Gervacio S V 2016 Disc. Appl. Math. 203 53
[17] Jiang Z Z and Yan W G 2019 Appl. Math. Comput. 361 42
[18] Cao J D, Liu J B and Wang S H 2019 J. Algebra Appl. 18 1950053
[19] Yang Y J and Klein D J 2014 J. Phys. A:Math. Theor. 47 375203
[20] Yang Y J and Zhang H P 2008 J. Phys. A:Math. Theor. 41 445203
[21] Jiang Z Z and Yan W G 2017 Physica A 484 21
[22] Wang Y and Yang X R 2015 Chin. Phys. B 24 118902
[23] Owaidat M Q, Al-Badawi A A, Asad J H and Mohammed AlT 2018 Chin. Phys. Lett. 35 020502
[24] Asad J H 2013 J. Stat. Phys. 150 1177
[25] Owaidat M Q and Asad J H 2016 Eur. Phys. J. Plus. 131 309
[26] Wu F Y 2004 J. Phys. A:Math. Gen. 37 6653
[27] Chair N and Dannoun E M A 2015 Phys. Scr. 90 035206
[28] Izmailian N S, Kenna R and Wu F Y 2014 J. Phys. A:Math. Theor. 47 035003
[29] Essam J W, Izmailian N S, Kenna R and Tan Z Z 2015 R. Soc. Open Sci. 2 140420
[30] Izmailian N S and Kenna R 2014 J. Stat. Mech. 9 1742
[31] Izmailian N S and Kenna R 2014 Chin. J. Phys. 53 040703
[32] Izmailian N S and Kenna R 2014 Condens. Matter Phys. 17 33008
[33] Tan Z Z 2011 Resistance Network Model (Xi'an:Xidian University Press) (in Chinese)
[34] Tan Z Z, Essam J W and Wu F Y 2014 Phys. Rev. E 90 012130
[35] Essam J W, Tan Z Z and Wu F Y 2014 Phys. Rev. E 90 032130
[36] Tan Z Z 2015 Sci. Rep. 5 11266
[37] Tan Z Z 2015 Phys. Rev. E 91 052122
[38] Tan Z Z 2015 Chin. Phys. B 24 020503
[39] Tan Z Z 2016 Chin. Phys. B 25 050504
[40] Tan Z Z 2017 Commun. Theor. Phys. 67 280
[41] Tan Zhen, Tan Z Z and Zhou L 2018 Commun. Theor. Phys. 69 610
[42] Tan Zhen and Tan Z Z 2018 Sci. Rep. 8 9937
[43] Tan Z Z 2017 Chin. Phys. B. 26 090503
[44] Tan Zhen, Tan Z Z and Chen J X 2018 Sci. Rep. 8 5798
[45] Zhang J W, Fu N, Yang L, Zhou L and Tan Z Z 2019 Results Phys. 15 102745
[46] Tan Z Z and Tan Zhen 2020 Phys. Scr. 95 035226
[47] Tan Z Z and Tan Zhen 2020 Acta Phys. Sin. 69 020502(in Chinese)
[48] Tan Z Z and Tan Zhen 2020 Commun. Theor. Phys. 72 055001
[49] Tan Z, Tan Z Z, Asad J H and Owaidat M Q 2019 Phys. Scr. 94 055203
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[3] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[4] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[5] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[6] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[7] Suppression of ion migration in perovskite materials by pulse-voltage method
Xue-Yan Wang(王雪岩), Hu Wang(王虎), Luo-Ran Chen(陈烙然), Yu-Chuan Shao(邵宇川), and Jian-Da Shao(邵建达). Chin. Phys. B, 2021, 30(11): 118104.
[8] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[9] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[10] Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films
Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2018, 27(9): 096104.
[11] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
[12] Degradation behavior of electrical properties of GaInAs (1.0 eV) and GaInAs (0.7 eV) sub-cells of IMM4J solar cells under 1-MeV electron irradiation
Yan-Qing Zhang(张延清), Ming-Xue Huo(霍明学), Yi-Yong Wu(吴宜勇), Cheng-Yue Sun(孙承月), Hui-Jie Zhao(赵慧杰), Hong-Bin Geng(耿洪滨), Shuai Wang(王帅), Ru-Bin Liu(刘如彬), Qiang Sun(孙强). Chin. Phys. B, 2017, 26(8): 088801.
[13] High pressure electrical transport behavior in SrF2 nanoplates
Xiao-Yan Cui(崔晓岩), Ting-Jing Hu(胡廷静), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2017, 26(4): 046401.
[14] Effect of substitution group on dielectric properties of 4H-pyrano [3, 2-c] quinoline derivatives thin films
H M Zeyada, F M El-Taweel, M M El-Nahass, M M El-Shabaan. Chin. Phys. B, 2016, 25(7): 077701.
[15] Improvement of sintering, nonlinear electrical, and dielectric properties of ZnO-based varistors doped with TiO2
Osama A Desouky, K E Rady. Chin. Phys. B, 2016, 25(6): 068402.
No Suggested Reading articles found!