Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 038102    DOI: 10.1088/1674-1056/abc545
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Stability and optoelectronic property of low-dimensional organic tin bromide perovskites

J H Lei(雷军辉)1, Q Tang(汤琼)1, J He(何军)1,†, and M Q Cai(蔡孟秋)2,
1 School of Science, Hunan University of Technology, Zhuzhou 412007, China; 2 School of Physics and Electronics Science, Hunan University, Changsha 410082, China
Abstract  The toxicity and degradation of hybrid lead-halide perovskites hinder their extensive applications. It is thus of great importance to explore non-toxic alternative materials with excellent stability and optoelectronic property. We investigate the atomic structures and optoelectronic properties of non-toxic organic tin bromide perovskites (OTBP) with one/zero-dimensional (1D/0D) structures by first-principles calculations. The calculated atomic structures show that the 1D/0D OTBPs are stable and the structure of inorganic octahedra in 0D is higher order than that in 1D. Moreover, the origination of exceptional purity emitting light in experiments is explained based on the calculated electronic structure.
Keywords:  one/zero dimensional non-toxic organic tin bromide perovskites      first principle calculation      stability      Optoelectronic property  
Received:  28 July 2020      Revised:  18 September 2020      Accepted manuscript online:  28 October 2020
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  51.30.+i (Thermodynamic properties, equations of state)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51972102).
Corresponding Authors:  Corresponding author. E-mail: hejun@hnu.edu.cn Corresponding author. E-mail: mqcai@hnu.edu.cn   

Cite this article: 

J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋) Stability and optoelectronic property of low-dimensional organic tin bromide perovskites 2021 Chin. Phys. B 30 038102

1 Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
2 Liu D and Kelly T L 2014 Nat. Photon. 8 133
3 Zhao Y Q, Wu L J, Liu B, Wang L Z, He P B and Cai M Q 2016 J. Power. Sources 313 96
4 Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C and Huang J 2015 Adv. Mater. 27 1912
5 Zhang X, Lin H, Huang H, Reckmeier C J, Zhang Y and Choy W C 2016 Nano Lett. 16 1415
6 Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
7 Zhang W, Eperon G E and Snaith H J 2016 Nat. Energy 1 16048
8 Chen Y, He M, Peng J, Sun Y and Liang Z 2016 Adv. Sci. 3 1500392
9 Saparov B and Mitzi D B 2016 Chem. Rev. 116 4558
10 Xiao Z W and Yan Y F 2017 Adv. Energy Mater. 7 1701136
11 Zhang W B, Xiang L J and Li H B 2016 J. Mater. Chem. A 4 19086
12 Chen S and Shi G Q 2017 Adv. Mater. 29 1605448
13 Arad-Vosk N, Rozenfeld N, Gonzalez-Rodriguez R, Coffer J L and Sa\'ar A 2017 Phys. Rev. B 95 085433
14 Aashir W, Mohammadi M T, Gu L L, Wang Z Y, Zhang D Q, Manikandan A, Zhang Q P, Zhang R J, Chueh Y L and Fan Z F 2017 Nano. Lett. 17 523
15 Zhou C K, Tian Y, Wang M C et al. 2017 Angew. Chem 129 9146
16 Wang D, Wen B, Zhu Y N, Tong C J, Tang Z K,Liu L M 2017 J. Phys. Chem. Lett. 8 876
17 Yang J H, Yuan Q and Yakobson B I 2016 J. Phys. Chem. C 120 24682
18 Pandey M, Jacobsen K W and Thygesen K S 2016 J. Phys. Chem. Lett. 7 4346
19 Bl\"ochl P E 1994 Phys. Rev. B 50 17953
20 Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
21 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
22 Dion M, Rydberg H, Schroder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
23 Jong U G, Yu C J, Ri J S, Kim N H and Ri G C 2016 Phys. Rev. B 94 125139
24 Ding Y F, Yu Z L, He P B, Wan Q, Liu B, Yang J L and Cai M Q 2020 Phys. Rev. Appl. 13 064053
25 Chen Z J and Tian D B 2011 J. Appl. Phys. 109 033506
26 Diao X F, Tang Y L and Xie Q 2019 Chin. Phys. B 28 017802
27 Xiao Z W, Meng W W, Bayrammurad S et al. 2016 J. Phys. Chem. Lett. 7 1213
28 Zhou C K, Lin H R, Tian Yet al. 2017 Chem. Sci. 9 586
29 Zhao Y Q, Xu Y, Zou D F, Wang J N, Xie G F, Liu B, Cai M Q and Jiang S L 2020 J. Phys.: Condens. Matter. 32 195501
30 Jiang S L, Liu Q and Zhao Y Q 2019 Thin Solid Films 685 234
31 Mclean T P and Loudon R 1960 J. Phys. Chem. Solids 13 1
32 Jiang M, Deng N H, Wang L, Xie H M and Qiu Y Q 2018 Chin. Phys. B 27 067102
33 Zhang Y M, Fan B L, Liu Y Z, Li H X, Deng K M and Fan J Y 2018 Appl. Phys. Let 112 183101
34 Liu Q, Tian Y Q, Zheng X P, Chen L S, Zhao Y Q and Jiang S L 2020 Appl. Phys. A 126 509
35 Yan D N, Liao C S, Zhao Y Q, Liu B, Yang J L and Cai M Q 2020 J. Phys. D.: Appl. Phys. 53 265302
36 Liao C S, Yu Z L, He P B, Zhao Y Q, Liu B and Cai M Q 2020 J. Power Sources 478 229078
37 Pan L Y, Ding Y F, Yu Z L, Wan Q, Liu B and Cai M Q 2020 J. Power Sources 451 227732
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[11] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
No Suggested Reading articles found!