INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Stability and optoelectronic property of low-dimensional organic tin bromide perovskites |
J H Lei(雷军辉)1, Q Tang(汤琼)1, J He(何军)1,†, and M Q Cai(蔡孟秋)2,‡ |
1 School of Science, Hunan University of Technology, Zhuzhou 412007, China; 2 School of Physics and Electronics Science, Hunan University, Changsha 410082, China |
|
|
Abstract The toxicity and degradation of hybrid lead-halide perovskites hinder their extensive applications. It is thus of great importance to explore non-toxic alternative materials with excellent stability and optoelectronic property. We investigate the atomic structures and optoelectronic properties of non-toxic organic tin bromide perovskites (OTBP) with one/zero-dimensional (1D/0D) structures by first-principles calculations. The calculated atomic structures show that the 1D/0D OTBPs are stable and the structure of inorganic octahedra in 0D is higher order than that in 1D. Moreover, the origination of exceptional purity emitting light in experiments is explained based on the calculated electronic structure.
|
Received: 28 July 2020
Revised: 18 September 2020
Accepted manuscript online: 28 October 2020
|
PACS:
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
51.30.+i
|
(Thermodynamic properties, equations of state)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51972102). |
Corresponding Authors:
†Corresponding author. E-mail: hejun@hnu.edu.cn ‡Corresponding author. E-mail: mqcai@hnu.edu.cn
|
Cite this article:
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋) Stability and optoelectronic property of low-dimensional organic tin bromide perovskites 2021 Chin. Phys. B 30 038102
|
1 Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643 2 Liu D and Kelly T L 2014 Nat. Photon. 8 133 3 Zhao Y Q, Wu L J, Liu B, Wang L Z, He P B and Cai M Q 2016 J. Power. Sources 313 96 4 Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C and Huang J 2015 Adv. Mater. 27 1912 5 Zhang X, Lin H, Huang H, Reckmeier C J, Zhang Y and Choy W C 2016 Nano Lett. 16 1415 6 Liu M, Johnston M B and Snaith H J 2013 Nature 501 395 7 Zhang W, Eperon G E and Snaith H J 2016 Nat. Energy 1 16048 8 Chen Y, He M, Peng J, Sun Y and Liang Z 2016 Adv. Sci. 3 1500392 9 Saparov B and Mitzi D B 2016 Chem. Rev. 116 4558 10 Xiao Z W and Yan Y F 2017 Adv. Energy Mater. 7 1701136 11 Zhang W B, Xiang L J and Li H B 2016 J. Mater. Chem. A 4 19086 12 Chen S and Shi G Q 2017 Adv. Mater. 29 1605448 13 Arad-Vosk N, Rozenfeld N, Gonzalez-Rodriguez R, Coffer J L and Sa\'ar A 2017 Phys. Rev. B 95 085433 14 Aashir W, Mohammadi M T, Gu L L, Wang Z Y, Zhang D Q, Manikandan A, Zhang Q P, Zhang R J, Chueh Y L and Fan Z F 2017 Nano. Lett. 17 523 15 Zhou C K, Tian Y, Wang M C et al. 2017 Angew. Chem 129 9146 16 Wang D, Wen B, Zhu Y N, Tong C J, Tang Z K,Liu L M 2017 J. Phys. Chem. Lett. 8 876 17 Yang J H, Yuan Q and Yakobson B I 2016 J. Phys. Chem. C 120 24682 18 Pandey M, Jacobsen K W and Thygesen K S 2016 J. Phys. Chem. Lett. 7 4346 19 Bl\"ochl P E 1994 Phys. Rev. B 50 17953 20 Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 21 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 22 Dion M, Rydberg H, Schroder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401 23 Jong U G, Yu C J, Ri J S, Kim N H and Ri G C 2016 Phys. Rev. B 94 125139 24 Ding Y F, Yu Z L, He P B, Wan Q, Liu B, Yang J L and Cai M Q 2020 Phys. Rev. Appl. 13 064053 25 Chen Z J and Tian D B 2011 J. Appl. Phys. 109 033506 26 Diao X F, Tang Y L and Xie Q 2019 Chin. Phys. B 28 017802 27 Xiao Z W, Meng W W, Bayrammurad S et al. 2016 J. Phys. Chem. Lett. 7 1213 28 Zhou C K, Lin H R, Tian Yet al. 2017 Chem. Sci. 9 586 29 Zhao Y Q, Xu Y, Zou D F, Wang J N, Xie G F, Liu B, Cai M Q and Jiang S L 2020 J. Phys.: Condens. Matter. 32 195501 30 Jiang S L, Liu Q and Zhao Y Q 2019 Thin Solid Films 685 234 31 Mclean T P and Loudon R 1960 J. Phys. Chem. Solids 13 1 32 Jiang M, Deng N H, Wang L, Xie H M and Qiu Y Q 2018 Chin. Phys. B 27 067102 33 Zhang Y M, Fan B L, Liu Y Z, Li H X, Deng K M and Fan J Y 2018 Appl. Phys. Let 112 183101 34 Liu Q, Tian Y Q, Zheng X P, Chen L S, Zhao Y Q and Jiang S L 2020 Appl. Phys. A 126 509 35 Yan D N, Liao C S, Zhao Y Q, Liu B, Yang J L and Cai M Q 2020 J. Phys. D.: Appl. Phys. 53 265302 36 Liao C S, Yu Z L, He P B, Zhao Y Q, Liu B and Cai M Q 2020 J. Power Sources 478 229078 37 Pan L Y, Ding Y F, Yu Z L, Wan Q, Liu B and Cai M Q 2020 J. Power Sources 451 227732 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|