|
|
Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber |
Xu Cheng(程旭)1, Xu Zhou(周旭)2,3, Chen Huang(黄琛)1, Can Liu(刘灿)1, Chaojie Ma(马超杰)1, Hao Hong(洪浩)1, Wentao Yu(于文韬)1,‡, Kaihui Liu(刘开辉)1,4,†, and Zhongfan Liu(刘忠范)3,5,§ |
1 State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China; 2 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China; 3 Beijing Graphene Institute(BGI), Beijing 100095, China; 4 International Centre for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; 5 Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China |
|
|
Abstract Optical fiber temperature sensors have been widely employed in enormous areas ranging from electric power industry, medical treatment, ocean dynamics to aerospace. Recently, graphene optical fiber temperature sensors attract tremendous attention for their merits of simple structure and direct power detecting ability. However, these sensors based on transfer techniques still have limitations in the relatively low sensitivity or distortion of the transmission characteristics, due to the unsuitable Fermi level of graphene and the destruction of fiber structure, respectively. Here, we propose a tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber (Gr-PCF) with the non-destructive integration of graphene into the holes of PCF. This hybrid structure promises the intact fiber structure and transmission mode, which efficiently enhances the temperature detection ability of graphene. From our simulation, we find that the temperature sensitivity can be electrically tuned over four orders of magnitude and achieve up to ~ 3.34×10-3 dB/(cm·℃) when the graphene Fermi level is ~ 35 meV higher than half the incident photon energy. Additionally, this sensitivity can be further improved by ~ 10 times through optimizing the PCF structure (such as the fiber hole diameter) to enhance the light-matter interaction. Our results provide a new way for the design of the highly sensitive temperature sensors and broaden applications in all-fiber optoelectronic devices.
|
Received: 10 June 2021
Revised: 25 June 2021
Accepted manuscript online: 07 July 2021
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
42.70.Gi
|
(Light-sensitive materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52021006, 52025023, 51991342, and 11888101), the Key R&D Program of Guangdong Province, China (Grant Nos. 2019B010931001, 2020B010189001, and 2018B030327001), the Pearl River Talent Recruitment Program of Guangdong Province, China (Grant No. 2019ZT08C321), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), Beijing Natural Science Foundation, China (Grant No. JQ19004), Beijing Municipal Science & Technology Commission, China (Grant No. Z181100004818003), the China Postdoctoral Science Foundation (Grant No. 2020M680177), National Postdoctoral Program for Innovative Talents of China (Grant No. BX20190016), and China Postdoctoral Science Foundation (Grant No. 2019M660280). |
Corresponding Authors:
Wentao Yu, Kaihui Liu, Zhongfan Liu
E-mail: khliu@pku.edu.cn;wtyu@pku.edu.cn;zfliu@pku.edu.cn
|
Cite this article:
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范) Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber 2021 Chin. Phys. B 30 118103
|
[1] Kaminow I P, Li T and Willner A E 2008 Optical Fiber Telecommunications V A, 5th edn. (Burlington: Academic) pp. 1-21 [2] Knight J C 2003 Nature 424 847 [3] Russell P 2003 Science 299 358 [4] Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I and Mazur E 2003 Nature 426 816 [5] Giallorenzi T G, Bucaro J A, Dandridge A, Sigel G H, Cole J H, Rashleigh S C and Priest R G 1982 IEEE J. Quantum Electron. 18 626 [6] Lee B 2003 Opt. Fiber Technol. 9 57 [7] Dragic P, Hawkins T, Foy P, Morris S and Ballato J 2012 Nat. Photon. 6 627 [8] Bhatia V and Vengsarkar A M 1996 Opt. Lett. 21 692 [9] Starodumov A N, Zenteno L A, Monzon D and DeLaRosa E 1997 Appl. Phys. Lett. 70 19 [10] Li E B, Wang X L and Zhang C 2006 Appl. Phys. Lett. 89 091119 [11] Markos C, Travers J C, Abdolvand A, Eggleton B J and Bang O 2017 Rev. Mod. Phys. 89 045003 [12] Cao Z X, Yao B C, Qin C Y, Yang R, Guo Y H, Zhang Y F, Wu Y, Bi L, Chen Y F, Xie Z D, Peng G D, Huang S W, Wong C W and Rao Y J 2019 Light Sci. Appl. 8 109 [13] Lou J Y, Wang Y P and Tong L M 2014 Sensors 14 5823 [14] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [15] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [16] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [17] Wang F, Zhang Y B, Tian C S, Girit C, Zettl A, Crommie M and Shen Y R 2008 Science 320 206 [18] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611 [19] Xia F N, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839 [20] Romagnoli M, Sorianello V, Midrio M, Koppens F H L, Huyghebaert C, Neumaier D, Galli P, Templ W, D'Errico A and Ferrari A C 2018 Nat. Rev. Mater. 3 392 [21] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902 [22] Gan X T, Shiue R J, Gao Y D, Meric I, Heinz T F, Shepard K, Hone J, Assefa S and Englund D 2013 Nat. Photon. 7 883 [23] Liu Y D, Wang F Q, Wang X M, Wang X Z, Flahaut E, Liu X L, Li Y, Wang X R, Xu Y B, Shi Y and Zhang R 2015 Nat. Commun. 6 8589 [24] Falkovsky L 2008 J. Phys.: Conf. Ser. 129 012004 [25] Gusynin V P, Sharapov S G and Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222 [26] Hanson G W 2008 J. Appl. Phys. 103 064302 [27] Vakil A and Engheta N 2011 Science 332 1291 [28] Khalaf A L, Mohamad F S, Rahman N A, Lim H N, Paiman S, Yusof N A, Mahdi M A and Yaacob M H 2017 Opt. Mat. Express 7 1858 [29] Luo J J, Liu G S, Zhou W J, Hu S Q, Chen L, Chen Y F, Luo Y H and Chen Z 2020 J. Mater. Chem. C 8 12893 [30] Sridevi S, Vasu K S, Asokan S and Sood A K 2016 Opt. Lett. 41 2604 [31] Zhang J, Liao G Z, Jin S S, Cao D, Wei Q S, Lu H H, Yu J H, Cai X, Tan S Z, Xiao Y, Tang J Y, Luo Y H and Chen Z 2014 Laser Phys. Lett. 11 035901 [32] Sun Q Z, Sun X H, Jia W H, Xu Z L, Luo H P, Liu D M and Zhang L 2016 IEEE Photon. Tech. Lett. 28 383 [33] Chu R, Guan C Y, Bo Y T, Shi J H, Zhu Z, Li P, Yang J and Yuan L B 2019 IEEE Photon. Tech. Lett. 31 553 [34] Horng J, Balch H B, McGuire A F, Tsai H Z, Forrester P R, Crommie M F, Cui B X and Wang F 2016 Nat. Commun. 7 13704 [35] Chen K, Zhou X, Cheng X, Qiao R X, Cheng Y, Liu C, Xie Y D, Yu W T, Yao F R, Sun Z P, Wang F, Liu K H and Liu Z F 2019 Nat. Photon. 13 754 [36] Nielsen M D and Mortensen N A 2003 Opt. Express 11 2762 [37] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64 [38] Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411 [39] Li W, Chen B G, Meng C, Fang W, Xiao Y, Li X Y, Hu Z F, Xu Y X, Tong L M, Wang H Q, Liu W T, Bao J M and Shen Y R 2014 Nano Lett. 14 955 [40] Zuo Y G, Yu W T, Liu C, Cheng X, Qiao R X, Liang J, Zhou X, Wang J H, Wu M H, Zhao Y, Gao P, Wu S W, Sun Z P, Liu K H, Bai X D and Liu Z F 2020 Nat. Nanotechnol. 15 987 [41] Kittel C and Kroemer H 1971 Thermal Physics, 2nd edn. (San Francisco: W. H. Freeman) pp. 189-191 [42] Cheng X, Zhou X, Tao L Y, Yu W T, Liu C, Cheng Y, Ma C J, Shang N Z, Xie J, Liu K H and Liu Z F 2020 Nanoscale 12 14472 [43] Liu J, Jiang X T, Zhang R Y, Zhang Y, Wu L M, Lu W, Li J Q, Li Y C and Zhang H 2019 Adv. Funct. Mater. 29 1807326 [44] Yang S, Liu Y L, Chen W, Jin W, Zhou J, Zhang H and Zakharova G S 2016 Sens. Actuators B Chem. 226 478 [45] Wan P B, Wen X M, Sun C Z, Chandran B K, Zhang H, Sun X M and Chen X D 2015 Small 11 5409 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|