Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 017305    DOI: 10.1088/1674-1056/28/1/017305
Special Issue: SPECIAL TOPIC — Photodetector: Materials, physics, and applications
SPECIAL TOPIC—Photodetector: Materials, physics, and applications Prev   Next  

Synthesis of free-standing Ga2O3 films for flexible devices by water etching of Sr3Al2O6 sacrificial layers

Xia Wang(王霞)1,2, Zhen-Ping Wu(吴真平)1,2, Wei Cui(崔尉)1,2, Yu-Song Zhi(支钰崧)1,2, Zhi-Peng Li(李志鹏)3, Pei-Gang Li(李培刚)1,2, Dao-You Guo(郭道友)4, Wei-Hua Tang(唐为华)1,2
1 Laboratory of Information Functional Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100876, China;
4 Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  

Flexible electronic devices have attracted much attention due to their practical and commercial value. Integration of thin films with soft substrate is an effective way to fabricate flexible electronic devices. Ga2O3 thin films deposited directly on soft substrates would be amorphous mostly. However, the thickness of the thin film obtained by mechanical exfoliation method is difficult to control and the edge of the film is fragile and easy to be damaged. In this work, we fabricated free-standing Ga2O3 thin films using the water-soluble perovskite Sr3Al2O6 as a sacrificial buffer layer. The obtained Ga2O3 thin films were polycrystalline. The thickness and dimension of the films were controllable. A flexible Ga2O3 solar-blind UV photodetector was fabricated by transferring the free-standing Ga2O3 film on a flexible polyethylene terephthalate substrate. The results displayed that the photoelectric performances of the flexible Ga2O3 photodetector were not sensitive to bending of the device. The free-standing Ga2O3 thin films synthesized through the method described here can be transferred to any substrates or integrated with other thin films to fabricate electronic devices.

Keywords:  free-standing Ga2O3 thin film      crystalline      Sr3Al2O6      flexible photodetector  
Received:  08 October 2018      Revised:  07 November 2018      Accepted manuscript online: 
PACS:  73.22.Pr (Electronic structure of graphene)  
  67.30.hr (Films)  
  71.20.Nr (Semiconductor compounds)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51572033, 51572241, 61774019, 61704153, and 11404029), the Fund of State Key Laboratory of IPOC (BUPT), and the Open Fund of IPOC (BUPT), Beijing Municipal Commission of Science and Technology, China (Grant No. SX2018-04).

Corresponding Authors:  Wei-Hua Tang     E-mail:  whtang@bupt.edu.cn

Cite this article: 

Xia Wang(王霞), Zhen-Ping Wu(吴真平), Wei Cui(崔尉), Yu-Song Zhi(支钰崧), Zhi-Peng Li(李志鹏), Pei-Gang Li(李培刚), Dao-You Guo(郭道友), Wei-Hua Tang(唐为华) Synthesis of free-standing Ga2O3 films for flexible devices by water etching of Sr3Al2O6 sacrificial layers 2019 Chin. Phys. B 28 017305

[1] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Ad. Mater. 28 10725
[2] Zhao B, Wang F, Chen H, Wang Y, Jiang M, Fang X and Zhao D 2015 Nano Let. 15 3988
[3] Kokubun Y, Miura K, Endo F and Nakagomi S 2007 Appl. Phy. Let. 90 031912
[4] Bilodeau R A, Zemlyanov D Y and Kramer R K 2017 Adv. Mater. Interfaces 4 1600913
[5] Cui S J, Mei Z X, Hou Y N, Chen Q S, Liang H L, Zhang Y H, Huo W X and Du X L 2018 Chin. Phys. B 27 067301
[6] Bhachu D S, Scanlon D O, Sankar G, Veal T D, Egdell R G, Cibin G, Dent A J, Knapp C E, Carmalt C J and Parkin I P 2015 Chem. Mater. 27 2788
[7] Manandhar S and Ramana C V 2017 Appl. Phys. Lett. 110 61902
[8] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L, Li P G and Tang W H 2014 Appl. Phys. Lett. 105 023507
[9] Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H snd Tang W H 2014 Opt. Mater. Express 4 1067
[10] Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T and Yamakosh S 2016 Semicond. Sci. Technol. 31 034001
[11] An Y H, Zhi Y S, Cui W, Zhao X L, Wu Z P, Guo D Y, Li P G and Tang W H 2016 Appl. Phs. A-mater. 122 1036
[12] Kim M, Seo J H, Singisetti U and Ma Z 2017 J. Mater. Chem. C 5 8338
[13] Higashiwaki M, Kuramata A, Murakami H and Kumagai Y 2017 J. Phys. D: Appl. Phys. 50 333002
[14] Konishi K, Goto K, Murakami H, Kumagai Y, Kuramata A, Yamakoshi S and Higashiwaki M 2017 Appl. Phys. Lett. 110 103506
[15] Zhou H, Si M, Alghamdi S, Qiu G, Yang L and Ye P D 2017 IEEE Electron Device Lett. 38 103
[16] Zhou H, Maize K, Qiu G, Shakouri A and Ye P D 2017 Appl. Phys. Lett. 111 092102
[17] Hou X, Liu B, Wang X, Wang Z, Wang Q, Chen D and Shen G 2013 Nanoscale 5 7831
[18] Oh S, Kim C K and Kim J 2018 ACS Photonics 5 1123
[19] Lin R C, Zheng W, Zhang D Zhang Z J, Liao Q X, Yang L and Huang H 2018 ACS Appl. Mater. & Inter 10 22419
[20] Liu X Z, Yue C, Xia C T and Zhang W L 2016 Chin. Phys. B 25 017201
[21] Xiong Z N, Xiu X Q, Li Y W, Hua X M, Xie Z L, Chen P, Liu B, Han P, Zhang R and Zheng Y D 2018 Chin. Phys. Lett. 35 058101
[22] Zhu H L, Fang Z Q, Preston C, Li Y Y and Hu L B 2014 Energy & Environmental Science 7 269
[23] Yao B, Huang L, Zhang J, Gao X, Wu J, Cheng Y, Xiao X, Wang B, Li Y and Zhou J 2016 Adv. Mater. 28 6353
[24] Jin J, Lee D, Im H G, Han Y C, Jeong E G, Rolandi M, Choi K C and Bae B S 2016 Adv. Mater. 28 5141
[25] Zhang Y, Mei Z, Cui S, Liang H, Liu Y and Du X 2016 Adv. Electron. Mater. 2 1500486
[26] Cui S J, Mei X, Zhang Y H, Liang L and Du L 2017 Adv. Opt. Mater. 5 1700454
[27] Lu S, Qi J, Liu S, Zhang Z, Wang Z, Lin P, Liao Q, Liang Q and Zhang Y 2014 ACS Appl. Mater. Interfaces 6 14116
[28] Hu P, Wang L, Yoon M, Zhang J, Feng W, Wang X, Wen Z, Idrobo J C, Miyamoto Y, Geohegan D B and Xiao K 2013 Nano Lett. 13 1649
[29] Shrestha N K, Bui H T, Lee T and Noh Y Y 2018 Langmuir 34 4575
[30] Liu C P, Ho C Y, Dosreis R, Foo Y, Guo P F, Zapien J A, Walukiewicz W and Yu K M 2018 ACS Appl. Mater. Interfaces 10 7239
[31] Liu N, Fang G, Zeng W, Zhou H, Cheng F, Zheng Q, Yuan L, Zou X and Zhao X 2010 ACS Appl. Mater. Interfaces 2 1973
[32] Lu, Baek D, Hong S, Kourkoutis L, Hikita and Hwan H 2016 Nat. Mater. 15 1255
[33] Baek D, L, Hikita, Hwan H and Kourkoutis L F 2017 ACS Appl. Mater. Interfaces 9 54
[34] Yang C, Liang H W, Zhang Z Z, Xia X C, Tao P C, Chen Y P, Zhang H Q, Shen R S, Luo Y M and Du G T 2018 RSC Adv. 8 6341
[35] Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H and Schoenfeld W V 2017 Phys. Status Solidi 214 1600688
[36] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Application. Adv. Mater. 28 10725
[37] Peng Y K, Zhang Y, Chen Z W, Guo D Y, Zhang X, Li P G, Wu Z P and Tang W H 2018 IEEE Photon. Technol. Lett. 30 993
[38] Wang X, Chen Z W, Guo D Y, Zhang X, Wu Z P, Li P G and Tang W H 2018 Opt. Mater. Express 8 2918
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[3] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[4] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[5] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[6] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[7] Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001) heterostructures
Shuang-Long Yang(杨双龙), De-Zheng Yang(杨德政), Yu Miao(缪宇), Cun-Xu Gao(高存绪), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2021, 30(12): 127302.
[8] Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading
Shao-Wei Sun(孙少伟), Guan-Qing Tang(汤观晴), Ya-Fei Huang(黄亚飞), Liang-Zhi Cao(曹良志), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2021, 30(10): 104701.
[9] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[10] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[11] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[12] Negative gate bias stress effects on conduction and low frequency noise characteristics in p-type poly-Si thin-film transistors
Chao-Yang Han(韩朝阳), Yuan Liu(刘远), Yu-Rong Liu(刘玉荣), Ya-Yi Chen(陈雅怡), Li Wang(王黎), Rong-Sheng Chen(陈荣盛). Chin. Phys. B, 2019, 28(8): 088502.
[13] Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route
Furhaj Ahmed Sheikh, Muhammad Khalid, Muhammad Shahzad Shifa, H M Noor ul Huda Khan Asghar, Sameen Aslam, Ayesha Perveen, Jalil ur Rehman, Muhammad Azhar Khan, Zaheer Abbas Gilani. Chin. Phys. B, 2019, 28(8): 088701.
[14] Effects of CeO2 and nano-ZrO2 agents on the crystallization behavior and mechanism of CaO-Al2O3-MgO-SiO2-based glass ceramics
Yan Zhang(张艳), Yu Shi(石钰), Xuefeng Zhang(张雪峰), Fengxia Hu(胡凤霞), Jirong Sun(孙继荣), Tongyun Zhao(赵同云), Baogen Shen(沈保根). Chin. Phys. B, 2019, 28(7): 078107.
[15] Influence of additives on the magnetic damping constant of CoIr soft magnetic thin films with negative magnetocrystalline anisotropy
Tianyong Ma(马天勇), Zhi Luo(罗智), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸). Chin. Phys. B, 2019, 28(5): 057505.
No Suggested Reading articles found!