Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳)1,†, Kun Yang(杨坤)1, Li-Jie Geng(耿利杰)1, Nan-Nan Liu(刘楠楠)1, Yun-Qi Hao(郝蕴琦)1, Tian-Hao Xian(贤天浩)2, and Li Zhan(詹黎)2
1 Henan Key Laboratory of Magnetoelectronic Information Functional Materials, School of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; 2 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract We report experimental observations performed using a net anomalous dispersion Er-doped fiber ring laser without polarization-selective elements, highlighting the domain-wall solitary pulses generated under the incoherent polarization coupling. By adjusting the pump power and the polarization state appropriately, bright and dark solitons can stably co-exist in the cavity, both centered at 1562.16 nm with a 3-dB spectral width of ~ 0.15 nm and a repetition rate of 3.83 MHz. Moreover, the 0.8 mm long thulium-doped fiber (TDF) facilitated the mode-locking and self-starting of the laser. This is the first demonstration of a laser being used to generate bright and dark solitons synchronously while using TDF as the saturable absorber (SA). Except possessing the all-fiber structure, the laser exhibits good stability, which may have a significant influence on improvement of the pulse-laser design, and may broaden practical applications in optical sensing, optical communication, and soliton multiplexed systems.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874040, 11904327, and 61905222), Foundation for Leading Talents of Minhang, Shanghai, and the Specialized Research Fund for the Doctoral Program of Zhengzhou University of Light Industry (Grant No. 0170-13501050036).
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎) Generation of domain-wall solitons in an anomalous dispersion fiber ring laser 2021 Chin. Phys. B 30 114212
[1] Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevicius A, Fermann M E and Ye J 2008 Nat. Photon.2 355 [2] Krylov A A, Chernykh D S and Obraztsova E D 2017 Opt. Lett.42 2439 [3] Song Y, Wang Z H, Wang C, Panajotov K and Zhang H 2020 Adv. Photon.2 1 [4] Gafner M, Kramer T, Remund S M, Holtz R and Neuenschwander B 2021 J. Laser Appl.33 012053 [5] Pupeza I, Zhang C, Hgner M and Ye J 2021 Nat. Photon.15 175 [6] Tiu Z C, Tan S J, Ahmad H and Harun S W 2014 Chin. Opt. Lett.12 113202 [7] Song Y, Shi X, Wu C, Tang D and Zhang H 2019 Appl. Phys. Rev.6 021313 [8] Zhao W and Bourkoff E 1992 J. Opt. Soc. Am. B9 1134 [9] Afanasyev V V, Kivshar Y S, Konotop V V and Serkin V N 1989 Opt. Lett.14 805 [10] Hao R, Li L, Li Z and Xue W 2004 Opt. Commun.236 79 [11] Peng J and Zeng H 2009 Phys. Rev. Appl.12 034052 [12] El G and Tovbis A 2020 Phys. Rev. E.101 052207 [13] Mirzazadeh M, Ekici M, Sonmezoglu A, Eslami M, Zhou Q and Kara A H 2016 Nonlinear Dyn.85 1979 [14] Nady A, Semaan G, Kemel M, Salhi M and Sanchez F 2020 J. Lig Technol.38 6905 [15] Sylvestre T 2002 Opt. Lett.27 482 [16] Zhang H, Tang D Y, Zhao L M and Wu X 2009 Phys. Rev. A80 045803 [17] Zhang H, Tang D Y, Zhao L M and Knize R J 2010 Opt. Express18 4428 [18] Yin H, Xu W, Luo A, Luo Z and Liu J 2010 Opt. Commun.283 4338 [19] Liu J, Li X, Zhang S, Zhang H, Yan P, Han M and Pang Z 2016 Sci. Rep.6 29128 [20] Zhang H, Tang D Y, Zhao L M, Bao Q and Ping-Loh K 2010 Opt. Commun.283 3334 [21] Ma J, Shao G D, Song Y F and Zhao L M 2019 Opt. Lett.44 2185 [22] Keller U 2003 Nature424 831 [23] Monzon-Hernandez D, Martfnez-Rios A, Salceda-Delgado G and Villatoro J 2013 Appl. Phys. Express6 032502 [24] Wei L, Liu L, Feng S and Mao Q 2013 Laser Phys.23 055102 [25] Gilles M, Bony P Y, Garnier J, Picozzi A, Guasoni M and Fatome J 2017 Nat. Photon.11 102 [26] Ahmadou D, Justin M, Hubert B M, Betchewe G, Serge D Y and Crépin K T 2020 Phys. Scr.95 105803 [27] Xian T H, Wang W C, Zhang W Y and Zhan L 2021 IEEE Photon. Technol. Lett.33 511 [28] Zhang W, Zhan L, Xian T and Gao L 2019 Opt. Let.44 4008 [29] Wang T, Zhang W, Wang J, Wu J, et al. 2020 Opt. Laser Technol.123 105948 [30] Hu X, Ma J, Zhao L M, Guo J and Tang D Y 2021 Opt. Express29 12590 [31] Ahmad H, Tiu Z, Zarei A, Suthaskumar M, Salim M and Harun S 2016 Appl. Phys. B122 69 [32] Zhang W, Zhan L, Xian T and Gao L 2019 IEEE J. Light. Technol.37 3756 [33] Wu Q C, Gu Y L, Yong Y, Yang Y F, Lei H B, Tian Y T, Tian J J and Bo G 2018 IEEE Photon. Technol. Lett.30 1285 [34] Zheng Y, Wang M, Zhao R, Zhang H and Li D 2020 Appl. Opt.59 396
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.