Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097201    DOI: 10.1088/1674-1056/abea87
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures

Yao Li(李姚)1,2,3,† and Hong-Bin Pu(蒲红斌)1,3
1 Department of Electronic Engineering, Xi'an University of Technology, Xi'an 710048, China;
2 Key Laboratory of Wide Bandgap Semiconductor Materials, Ministry of Education, Xi'an 710071, China;
3 Xi'an Key Laboratory of Power Electronic Devices and High Efficiency Power Conversion, Xi'an 710048, China
Abstract  To study the electron transport properties in InGaN channel-based heterostructures, a revised Fang-Howard wave function is proposed by combining the effect of GaN back barrier. Various scattering mechanisms, such as dislocation impurity (DIS) scattering, polar optical phonon (POP) scattering, piezoelectric field (PE) scattering, interface roughness (IFR) scattering, deformation potential (DP) scattering, alloy disorder (ADO) scattering from InGaN channel layer, and temperature-dependent energy bandgaps are considered in the calculation model. A contrast of AlInGaN/AlN/InGaN/GaN double heterostructure (DH) to the theoretical AlInGaN/AlN/InGaN single heterostructure (SH) is made and analyzed with a full range of barrier alloy composition. The effect of channel alloy composition on InGaN channel-based DH with technologically important Al(In,Ga)N barrier is estimated and optimal indium mole fraction is 0.04 for higher mobility in DH with Al0.4In0.07Ga0.53N barrier. Finally, the temperature-dependent two-dimensional electron gas (2DEG) density and mobility in InGaN channel-based DH with Al0.83In0.13Ga0.04N and Al0.4In0.07Ga0.53N barrier are investigated. Our results are expected to conduce to the practical application of InGaN channel-based heterostructures.
Keywords:  scattering mechanism      double heterostructures      electron mobility      InGaN channel  
Received:  27 November 2020      Revised:  21 January 2021      Accepted manuscript online:  01 March 2021
PACS:  72.20.Fr (Low-field transport and mobility; piezoresistance)  
  72.80.Cw (Elemental semiconductors)  
  72.20.Dp (General theory, scattering mechanisms)  
Fund: Project supported by the Xi'an Science and Technology Program, China (Grant No. 2019217814GXRC014CG015-GXYD14.3) and the Open Project of Key Laboratory of Wide Band-gap Semiconductor Materials, Ministry of Education, China (Grant No. Kdxkf2019-01).
Corresponding Authors:  Yao Li     E-mail:  liyao@xaut.edu.cn

Cite this article: 

Yao Li(李姚) and Hong-Bin Pu(蒲红斌) Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures 2021 Chin. Phys. B 30 097201

[1] Hsin Y M, Hsu H T, Chuo C C and Chyi J I 2010 IEEE Electron Dev. Lett. 22 501
[2] Chuo C C, Lee C M and Chyi J I 2001 Appl. Phys. Lett. 78 314
[3] Wang C X, Tsubaki K, Kobayashi N and Makimoto T 2004 Appl. Phys. Lett. 84 2313
[4] Sohi P, Carlin J F and Grandjean N 2018 Appl. Phys. Lett. 112 262101
[5] Wang P Y, Zhang J F, Xue J S, Zhou Y B, Zhang J C and Hao Y 2011 Acta Phys. Sin. 60 117304 (in Chinese)
[6] Li Y, Zhang J F, Wan W, Zhang Y C, Nie Y H, Zhang J C and Hao Y 2015 Physica E 67 77
[7] Zhang Y C, Zhou X W, Xu S R, Zhang J F, Zhang J C and Hao Y 2016 Appl. Phys. Express 9 061003
[8] Laboutin O, Cao Y, Johnson W, Wang R, Li G, Jena D and Xing H 2012 Appl. Phys. Lett. 100 121909
[9] Wang R H, Li G W, Karbasian G, Guo J, Faria F, Hu Z Y, Yue Y Z, Verma J, Laboulin O and Cao Y 2013 Appl. Phys. Express 6 016503
[10] Xie J, Leach J H, Ni X, Wu M, Shimada R, Özgür Ü and Morkoç H 2007 Appl. Phys. Lett. 91 262102
[11] Li Y 2019 Phys. Status Solidi B 256 1800704
[12] Cao Y 2015 Electron. Lett. 51 1205
[13] Gökden S, Tülek R, Teke A, Leach J H, Fan Q, Xie J, Özgür Ü, Morkoç H, Lisesivdin S B and Özbay E 2010 Semicond. Sci. Technol. 25 045024
[14] Kuzmík J 2002 Semicond. Sci. Technol. 17 540
[15] Li Y, Zhang J F, Xue J S, Liu G P, R. D. Quan, Duan X L, Zhang J C and Hao Y 2018 Phys. Status Solidi A 215 1700787
[1] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[2] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[3] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[4] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[5] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[6] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[7] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[8] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[9] Effect of defects properties on InP-based high electron mobility transistors
Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2019, 28(7): 078501.
[10] Effects of growth temperature and metamorphic buffer on electron mobility of InAs film grown on Si substrate by molecular beam epitaxy
Jing Zhang(张静), Hongliang Lv(吕红亮), Haiqiao Ni(倪海桥), Shizheng Yang(杨施政), Xiaoran Cui(崔晓然), Zhichuan Niu(牛智川), Yimen Zhang(张义门), Yuming Zhang(张玉明). Chin. Phys. B, 2019, 28(2): 028101.
[11] The origin of distorted intensity pattern sensed by a lens and antenna coupled AlGaN/GaN-HEMT terahertz detector
Xiang Li(李想), Jian-Dong Sun(孙建东), Hong-Juan Huang(黄宏娟), Zhi-Peng Zhang(张志鹏), Lin Jin(靳琳), Yun-Fei Sun(孙云飞), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2019, 28(11): 118502.
[12] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[13] Integration of a field-effect-transistor terahertz detector with a diagonal horn antenna
Xiang Li(李想), Jian-dong Sun(孙建东), Zhi-peng Zhang(张志鹏), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2018, 27(6): 068506.
[14] Two-dimensional electron gas characteristics of InP-based high electron mobility transistor terahertz detector
Jin-Lun Li(李金伦), Shao-Hui Cui(崔少辉), Jian-Xing Xu(徐建星), Xiao-Ran Cui(崔晓然), Chun-Yan Guo(郭春妍), Ben Ma(马奔), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(4): 047101.
[15] A novel enhancement mode AlGaN/GaN high electron mobility transistor with split floating gates
Hui Wang(王辉), Ning Wang(王宁), Ling-Li Jiang(蒋苓利), Xin-Peng Lin(林新鹏), Hai-Yue Zhao(赵海月), Hong-Yu Yu(于洪宇). Chin. Phys. B, 2017, 26(4): 047305.
No Suggested Reading articles found!