Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097101    DOI: 10.1088/1674-1056/ac0e20
RAPID COMMUNICATION Prev   Next  

Passivation and dissociation of Pb-type defects at a-SiO2/Si interface

Xue-Hua Liu(刘雪华)1, Wei-Feng Xie(谢伟锋)1, Yang Liu(刘杨)2,3, and Xu Zuo(左旭)1,4,5,†
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China;
2 Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China;
3 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China;
4 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300350, China;
5 Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Nankai University, Tianjin 300350, China
Abstract  It is well known that in the process of thermal oxidation of silicon, there are Pb-type defects at amorphous silicon dioxide/silicon (a-SiO2/Si) interface due to strain. These defects have a very important impact on the performance and reliability of semiconductor devices. In the process of passivation, hydrogen is usually used to inactivate Pb-type defects by the reaction Pb+H2PbH+H. At the same time, PbH centers dissociate according to the chemical reaction PbH→Pb+H. Therefore, it is of great significance to study the balance of the passivation and dissociation. In this work, the reaction mechanisms of passivation and dissociation of the Pb-type defects are investigated by first-principles calculations. The reaction rates of the passivation and dissociation are calculated by the climbing image-nudged elastic band (CI-NEB) method and harmonic transition state theory (HTST). By coupling the rate equations of the passivation and dissociation reactions, the equilibrium density ratio of the saturated interfacial dangling bonds and interfacial defects (Pb, Pb0, and Pb1) at different temperatures is calculated.
Keywords:  first-principles calculation      a-SiO2/Si interface      Pb-type defects      equilibrium density  
Received:  02 June 2021      Revised:  19 June 2021      Accepted manuscript online:  24 June 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.72.Bb (Theories and models of crystal defects)  
  61.80.Az (Theory and models of radiation effects)  
Fund: Project supported by the Science Challenge Project, China (Grant No. TZ2016003-1-105), the Tianjin Natural Science Foundation, China (Grant No. 20JCZDJC00750), and the Fundamental Research Funds for the Central Universities, Nankai University (Grant Nos. 63211107 and 63201182).
Corresponding Authors:  Xu Zuo     E-mail:  xzuo@nankai.edu.cn

Cite this article: 

Xue-Hua Liu(刘雪华), Wei-Feng Xie(谢伟锋), Yang Liu(刘杨), and Xu Zuo(左旭) Passivation and dissociation of Pb-type defects at a-SiO2/Si interface 2021 Chin. Phys. B 30 097101

[1] Cheng Y C 1977 Prog. Surf. Sci. 8 181
[2] Caplan P J, Poindexter E H, Deal B E and Razouk R R 1979 J. Appl. Phys. 50 5847
[3] Brower K L 1983 Appl. Phys. Lett. 43 1111
[4] Rabedeau T A, Tidswell I M, Pershan P S, Bevk J and Freer B S 1991 Appl. Phys. Lett. 59 3422
[5] Rong F C, Harvey J F, Poindexter E H and Gerardi G J 1993 Appl. Phys. Lett. 63 920
[6] Von Bardeleben H J, Schoisswohl M and Cantin J L 1996 Colloids Surf. A 115 277
[7] Nishi Y, Tanaka K and Ohwada A 1972 Jpn. J. Appl. Phys. 10 52
[8] Lenahan P M and Dressendorfer P V 1982 Appl. Phys. Lett. 41 542
[9] Cook M and White C T 1987 Phys. Rev. Lett. 59 1741
[10] Brower K L 1988 Phys. Rev. B 38 9657
[11] Brower K L and Myers S M 1990 Appl. Phys. Lett. 57 162
[12] Stesmans A 1996 Appl. Phys. Lett. 68 2723
[13] Stesmans A 2000 Phys. Rev. B 61 8393
[14] Brower K L 1990 Phys. Rev. B 42 3444
[15] Stathis J H 1995 J. Appl. Phys. 77 6205
[16] Stesmans A 2000 J. Appl. Phys. 88 489
[17] Khatri R, Asoka Kumar P, Nielsen B, Roellig L O and Lynn K G 1994 Appl. Phys. Lett. 65 330
[18] Van de Walle C G and Street R A 1994 Phys. Rev. B 49 14766
[19] Stesmans A 1996 Appl. Phys. Lett. 68 2076
[20] Li P, Song Y and Zuo X 2019 Phys. Status Solidi RRL 13 1800547
[21] Li P, Chen Z H, Yao P, Zhang F J, Wang J W, Song Y and Zuo X 2019 Appl. Surf. Sci. 483 231
[22] Hong Z C and Zuo X 2020 Journal of System Simulation 32 2362
[23] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Vineyard G H 1957 J. Phys. Chem. Solids 3 121
[26] Stesmans A 1993 Phys. Rev. B 48 2418
[27] Shelby J E 1977 J. Appl. Phys. 48 3387
[28] Stesmans A and Afanas'ev V V 1998 J. Phys.: Condens. Matter 10 L19
[29] Cook M and White C T 1988 Phys. Rev. B 38 9674
[30] Pantelides S T, Rashkeev S N, Buczko R, Fleetwood D M and Schrimpf R D 2000 IEEE Trans. Nucl Sci. 47 2262
[31] Stirling A and Pasquarello A 2005 J. Phys.: Condens. Matter 17 S2099
[32] Stirling A, Pasquarello A, Charlier J and Car R 2000 Phys. Rev. Lett. 85 2773
[33] Stathis J H and Cartier E 1994 Phys. Rev. Lett. 72 2745
[34] Stathis J H and Dori L 1991 Appl. Phys. Lett. 58 1641
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!