Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 090305    DOI: 10.1088/1674-1056/ac0cdc
GENERAL Prev   Next  

An optimized cluster density matrix embedding theory

Hao Geng(耿浩) and Quan-lin Jie(揭泉林)
Department of Physics, Wuhan University, Wuhan 430072, China
Abstract  We propose an optimized cluster density matrix embedding theory (CDMET). It reduces the computational cost of CDMET with simpler bath states. And the result is as accurate as the original one. As a demonstration, we study the distant correlations of the Heisenberg J1-J2 model on the square lattice. We find that the intermediate phase (0.43≤sssim J2≤sssim 0.62) is divided into two parts. One part is a near-critical region (0.43≤J2≤0.50). The other part is the plaquette valence bond solid (PVB) state (0.51≤J2≤0.62). The spin correlations decay exponentially as a function of distance in the PVB.
Keywords:  cluster density matrix embedding theory      distant correlation      Heisenberg J1-J2 model  
Received:  19 March 2021      Revised:  09 June 2021      Accepted manuscript online:  21 June 2021
PACS:  03.65.-w (Quantum mechanics)  
Corresponding Authors:  Quan-lin Jie     E-mail:  qljie@whu.edu.cn

Cite this article: 

Hao Geng(耿浩) and Quan-lin Jie(揭泉林) An optimized cluster density matrix embedding theory 2021 Chin. Phys. B 30 090305

[1] Wang L and Sandvik A W 2018 Phys. Rev. Lett. 121 107202
[2] Zhang H and Lamas C A 2013 Phys. Rev. B 87 024415
[3] Chen Y, Xie Z Y and Yu J F 2018 Chin. Phys. B 27 080503
[4] Chen J, Liao H J, Xie H D, Han X J, Huang R Z, Cheng S, Wei Z C, Xie Z Y and Xiang T 2017 Chin. Phys. Lett. 34 050503
[5] Liu J L and Liang J Q 2019 Chin. Phys. B 28 110304
[6] Tan X D, Jin B Q and Gao W 2013 Chin. Phys. B 22 020308
[7] Chen S R, Xia Y J and Man Z X 2010 Chin. Phys. B 19 050304
[8] Zhu X and Tong P Q 2008 Chin. Phys. B 17 1623
[9] Bao A, Chen Y H and Zhang X Z 2013 Chin. Phys. B 22 110309
[10] Knizia G and Chan G K L 2012 Phys. Rev. Lett. 109 186404
[11] Bulik I W, Scuseria G E and Dukelsky J 2014 Phys. Rev. B 89 035140
[12] Chen Q, Booth G H, Sharma S, Knizia G and Chan G K L 2014 Phys. Rev. B 89 165134
[13] Fan Z and Jie Q L 2015 Phys. Rev. B 91 195118
[14] Qin J B, Jie Q L and Fan Z 2016 Computer Physics Communications 204 38
[15] Gunst K, Wouters S, Baerdemacker S D and Neck D V 2017 Phys. Rev. B 95 195127
[16] Gong S S, Zhu W, Sheng D N, Motrunich O I and Fisher M P A 2014 Phys. Rev. Lett. 113 027201
[17] Gelfand M P, Singh R R P and Huse D A 1989 Phys. Rev. B 40 10801
[18] Jiang H C, Yao H and Balents L 2012 Phys. Rev. B 86 024424
[19] Murg V, Verstraete F and Cirac J I 2009 Phys. Rev. B 79 195119
[20] Darradi R, Derzhko O, Zinke R, Schulenburg J, Krüger S E and Richter J 2008 Phys. Rev. B 78 214415
[21] Chandra P and Doucot B 1988 Phys. Rev. B 38 9335
[22] Read N and Sachdev S 1989 Phys. Rev. Lett. 62 1694
[23] Takano K, Kito Y, Ono Y and Sano K 2003 Phys. Rev. Lett. 91 197202
[24] Mezzacapo F 2012 Phys. Rev. B 86 045115
[25] Yu J F and Kao Y J 2012 Phys. Rev. B 85 094407
[26] Li T, Becca F, Hu W and Sorella S 2012 Phys. Rev. B 86 075111
[27] Wang L, Poilblanc D, Gu Z C, Wen X G and Verstraete F 2013 Phys. Rev. Lett. 111 037202
[28] Hu W J, Becca F, Parola A and Sorella S 2013 Phys. Rev. B 88 060402
[29] Doretto R L 2014 Phys. Rev. B 89 104415
[30] Henelius P and Sandvik A W 2000 Phys. Rev. B 62 1102
[31] Wang L, Gu Z C, Verstraete F and Wen X G 2016 Phys. Rev. B 94 075143
[32] Sirker J, Zheng.W, Sushkov O P and Oitmaa J 2006 Phys. Rev. B 73 184420
[33] Jongh M S L D C D, Leeuwen J M J V and Saarloos W V 2000 Phys. Rev. B 62 14844
[34] Sushkov O P, Oitmaa J and Zheng W 2001 Phys. Rev. B 63 104420
[35] Morita S, Kaneko R and Imada M 2015 J. Phys. Soc. Jpn. 84 024720
[1] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[2] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[5] Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
Yueshui Zhang(张越水) and Lei Wang(王磊). Chin. Phys. B, 2022, 31(11): 110205.
[6] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[9] Digraph states and their neural network representations
Ying Yang(杨莹) and Huaixin Cao(曹怀信). Chin. Phys. B, 2022, 31(6): 060303.
[10] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[11] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[12] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[13] Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method
Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军). Chin. Phys. B, 2022, 31(1): 010202.
[14] Topology of a parity-time symmetric non-Hermitian rhombic lattice
Shumai Zhang(张舒迈), Liang Jin(金亮), and Zhi Song(宋智). Chin. Phys. B, 2022, 31(1): 010312.
[15] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
No Suggested Reading articles found!