Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 090308    DOI: 10.1088/1674-1056/ac0daf
GENERAL Prev   Next  

Quantum speed limit for the maximum coherent state under the squeezed environment

Kang-Ying Du(杜康英)1, Ya-Jie Ma(马雅洁)1, Shao-Xiong Wu(武少雄)1,†, and Chang-Shui Yu(于长水)2,‡
1 School of Science, North University of China, Taiyuan 030051, China;
2 School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  The quantum speed limit time for quantum system under squeezed environment is studied. We consider two typical models, the damped Jaynes-Cummings model and the dephasing model. For the damped Jaynes-Cummings model under squeezed environment, we find that the quantum speed limit time becomes larger with the squeezed parameter r increasing and indicates symmetry about the phase parameter value θ=π. Meanwhile, the quantum speed limit time can also be influenced by the coupling strength between the system and environment. However, the quantum speed limit time for the dephasing model is determined by the dephasing rate and the boundary of acceleration region that interacting with vacuum reservoir can be broken when the squeezed environment parameters are appropriately chosen.
Keywords:  quantum speed limit      squeezed reservoir      Jaynes-Cummings model      dephasing model  
Received:  18 May 2021      Revised:  19 June 2021      Accepted manuscript online:  23 June 2021
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11775040) and the Scientific and Technological Innovation Program of the Higher Education Institutions of Shanxi Province, China (Grant No. 2019L0527).
Corresponding Authors:  Shao-Xiong Wu, Chang-Shui Yu     E-mail:  sxwu@nuc.edu.cn;ycs@dlut.edu.cn

Cite this article: 

Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水) Quantum speed limit for the maximum coherent state under the squeezed environment 2021 Chin. Phys. B 30 090308

[1] Mandelstam L and Tamm I 1945 J. Phys. (Moscow) 9 249
[2] Margolus N and Levitin L B 1998 Physica D 120 188
[3] Anandan J and Aharonov Y 1990 Phys. Rev. Lett. 65 1697
[4] Fleming G N 1973 Nuovo Cimento 16 232
[5] Bhattacharyya K 1983 J. Phys. A 16 2993
[6] Vaidman L 1992 Am. J. Phys. 60 182
[7] Giovannetti V, Lloyd S and Maccone L 2003 Phys. Rev. A 67 052109
[8] Yung M H 2006 Phys. Rev. A 74 030303
[9] Jones P J and Kok P 2010 Phys. Rev. A 82 022107
[10] Giovannetti V, Lloyd S and Maccone L 2012 Phys. Rev. Lett. 108 260405
[11] Hegerfeldt G C 2013 Phys. Rev. Lett. 111 260501
[12] Campaioli F, Pollock F A, Binder F C and Modi K 2018 Phys. Rev. Lett. 120 060409
[13] Breuer H P and Petruccione F 2007 The theory of open quantum systems (New York: Oxford University Press)
[14] Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
[15] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402
[16] del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
[17] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
[18] Xu Z Y, Luo S, Yang W L, Liu C and Zhu S 2014 Phys. Rev. A 89 012307
[19] Zhang Y J, Han, Xia Y J, Cao J P and Fan H 2014 Sci. Rep. 4 4890
[20] Wu S X, Zhang Y, Yu C S and Song H S 2015 J. Phys. A: Math. Theor. 48 045301
[21] Liu C, Xu Z Y and Zhu S 2015 Phys. Rev. A 91 022102
[22] Sun Z, Liu J, Ma J and Wang X 2015 Sci. Rep. 5 8444
[23] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112
[24] Liu H B, Yang W L, An J H and Xu Z Y 2016 Phys. Rev. A 93 020105
[25] Wei Y B, Zou J, Wang Z M, Shao B and Li H 2016 Phys. Lett. A 380 397
[26] Song Y J, Kuang L M and Tan Q S 2016 Quantum Inf. Process. 15 2325
[27] Cai X and Zheng Y 2017 Phys. Rev. A 95 052104
[28] Zhang L, Sun Y and Luo S 2018 Phys. Lett. A 382 2599
[29] Wu S X and Yu C S 2018 Phys. Rev. A 98 042132
[30] Xu K, Zhang G F and Liu W M 2019 Phys. Rev. A 100 052305
[31] Wu S X and Yu C S 2020 Sci. Rep. 10 5500
[32] Lu X, Zhang Y J and Xia Y J 2021 Chin. Phys. B 30 020301
[33] Pires D P, Cianciaruso M, Céleri L C, Adesso G and Soares-Pinto D O 2016 Phys. Rev. X 6 021031
[34] Marvian I, Spekkens R W and Zanardi P 2016 Phys. Rev. A 93 052331
[35] Campbell S and Deffner S 2017 Phys. Rev. Lett. 118 100601
[36] Xu Z Y, You W L, Dong Y L, Zhang C and Yang W L 2018 Phys. Rev. A 97 032115
[37] Brody D C and Longstaff B 2019 Phys. Rev. Res. 1 033127
[38] Bukov M, Sels D and Polkovnikov A 2019 Phys. Rev. X 9 011034
[39] Fogarty T, Deffner S, Busch T and Campbell S 2020 Phys. Rev. Lett. 124 110601
[40] Xu T N, Li J, Busch T, Chen X and Fogarty T 2020 Phys. Rev. Res. 2 023125
[41] Suzuki K and Takahashi K 2020 Phys. Rev. Res. 2 032016
[42] Sun S and Zheng Y 2019 Phys. Rev. Lett. 123 180403
[43] Cimmarusti A D, Yan Z, Patterson B D, Corcos L P, Orozco L A and Deffner S 2015 Phys. Rev. Lett. 114 233602
[44] Frey M R 2016 Quantum Inf. Process. 15 3919
[45] Deffner S and Campbell S 2017 J. Phys. A: Math. Theor. 50 453001
[46] Deffner S 2017 New J. Phys. 19 103018
[47] Shiraishi N, Funo K and Saito K 2018 Phys. Rev. Lett. 121 070601
[48] Okuyama M and Ohzeki M 2018 Phys. Rev. Lett. 120 070402
[49] Shanahan B, Chenu A, Margolus N and del Campo A 2018 Phys. Rev. Lett. 120 070401
[50] Nicholson S B, García-Pintos L P, del Campo A and Green J R 2020 Nat. Phys. 16 1211
[51] Wu S X and Yu C S 2020 Chin. Phys. B 29 050302
[52] Hu X, Sun S and Zheng Y 2020 Phys. Rev. A 101 042107
[53] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett. 55 2409
[54] Wu L A, Kimble H J, Hall J L and Wu H 1986 Phys. Rev. Lett. 57 2520
[55] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[56] Caves C M 1981 Phys. Rev. D 23 1693
[57] Vahlbruch H, Khalaidovski A, Lastzka N, Gräf C, Danzmann K and Schnabel R 2010 Class Quantum Grav. 27 084027
[58] Wu S X, Yu C S and Song H S 2015 Phys. Lett. A 379 1228
[59] Ishizaki A and Tanimura Y 2008 Chem. Phys. 347 185
[60] Wang F Q, Zhang Z M and Liang R S 2009 Chin. Phys. B 18 0597
[61] Wu S X and Yu C S 2017 Int. J. Theor. Phys. 56 1198
[1] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[2] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[3] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[4] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[5] Effective Hamiltonian of the Jaynes-Cummings model beyond rotating-wave approximation
Yi-Fan Wang(王伊凡), Hong-Hao Yin(尹洪浩), Ming-Yue Yang(杨明月), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(6): 064204.
[6] Coherent-driving-assisted quantum speedup in Markovian channels
Xiang Lu(鹿翔), Ying-Jie Zhang(张英杰), and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(2): 020301.
[7] Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces
Jing-Ying Wei(魏静莹), Qing Wang(王青), and Jian Jing(荆坚). Chin. Phys. B, 2021, 30(11): 110307.
[8] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[9] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[10] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[11] On the time-independent Hamiltonian in real-time and imaginary-time quantum annealing
Jie Sun(孙杰)† and Songfeng Lu(路松峰)‡. Chin. Phys. B, 2020, 29(10): 100303.
[12] Quantum speed-up capacity in different types of quantum channels for two-qubit open systems
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超). Chin. Phys. B, 2018, 27(6): 060302.
[13] Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(11): 114207.
[14] Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning
Kai Xu(徐凯), Wei Han(韩伟), Ying-Jie Zhang(张英杰), Heng Fan(范桁). Chin. Phys. B, 2018, 27(1): 010302.
[15] Quantum speed limit time of a two-level atom under different quantum feedback control
Min Yu(余敏), Mao-Fa Fang(方卯发), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(1): 010303.
No Suggested Reading articles found!