|
|
Quantum speed limit for the maximum coherent state under the squeezed environment |
Kang-Ying Du(杜康英)1, Ya-Jie Ma(马雅洁)1, Shao-Xiong Wu(武少雄)1,†, and Chang-Shui Yu(于长水)2,‡ |
1 School of Science, North University of China, Taiyuan 030051, China; 2 School of Physics, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract The quantum speed limit time for quantum system under squeezed environment is studied. We consider two typical models, the damped Jaynes-Cummings model and the dephasing model. For the damped Jaynes-Cummings model under squeezed environment, we find that the quantum speed limit time becomes larger with the squeezed parameter r increasing and indicates symmetry about the phase parameter value θ=π. Meanwhile, the quantum speed limit time can also be influenced by the coupling strength between the system and environment. However, the quantum speed limit time for the dephasing model is determined by the dephasing rate and the boundary of acceleration region that interacting with vacuum reservoir can be broken when the squeezed environment parameters are appropriately chosen.
|
Received: 18 May 2021
Revised: 19 June 2021
Accepted manuscript online: 23 June 2021
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11775040) and the Scientific and Technological Innovation Program of the Higher Education Institutions of Shanxi Province, China (Grant No. 2019L0527). |
Corresponding Authors:
Shao-Xiong Wu, Chang-Shui Yu
E-mail: sxwu@nuc.edu.cn;ycs@dlut.edu.cn
|
Cite this article:
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水) Quantum speed limit for the maximum coherent state under the squeezed environment 2021 Chin. Phys. B 30 090308
|
[1] Mandelstam L and Tamm I 1945 J. Phys. (Moscow) 9 249 [2] Margolus N and Levitin L B 1998 Physica D 120 188 [3] Anandan J and Aharonov Y 1990 Phys. Rev. Lett. 65 1697 [4] Fleming G N 1973 Nuovo Cimento 16 232 [5] Bhattacharyya K 1983 J. Phys. A 16 2993 [6] Vaidman L 1992 Am. J. Phys. 60 182 [7] Giovannetti V, Lloyd S and Maccone L 2003 Phys. Rev. A 67 052109 [8] Yung M H 2006 Phys. Rev. A 74 030303 [9] Jones P J and Kok P 2010 Phys. Rev. A 82 022107 [10] Giovannetti V, Lloyd S and Maccone L 2012 Phys. Rev. Lett. 108 260405 [11] Hegerfeldt G C 2013 Phys. Rev. Lett. 111 260501 [12] Campaioli F, Pollock F A, Binder F C and Modi K 2018 Phys. Rev. Lett. 120 060409 [13] Breuer H P and Petruccione F 2007 The theory of open quantum systems (New York: Oxford University Press) [14] Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002 [15] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402 [16] del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403 [17] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402 [18] Xu Z Y, Luo S, Yang W L, Liu C and Zhu S 2014 Phys. Rev. A 89 012307 [19] Zhang Y J, Han, Xia Y J, Cao J P and Fan H 2014 Sci. Rep. 4 4890 [20] Wu S X, Zhang Y, Yu C S and Song H S 2015 J. Phys. A: Math. Theor. 48 045301 [21] Liu C, Xu Z Y and Zhu S 2015 Phys. Rev. A 91 022102 [22] Sun Z, Liu J, Ma J and Wang X 2015 Sci. Rep. 5 8444 [23] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112 [24] Liu H B, Yang W L, An J H and Xu Z Y 2016 Phys. Rev. A 93 020105 [25] Wei Y B, Zou J, Wang Z M, Shao B and Li H 2016 Phys. Lett. A 380 397 [26] Song Y J, Kuang L M and Tan Q S 2016 Quantum Inf. Process. 15 2325 [27] Cai X and Zheng Y 2017 Phys. Rev. A 95 052104 [28] Zhang L, Sun Y and Luo S 2018 Phys. Lett. A 382 2599 [29] Wu S X and Yu C S 2018 Phys. Rev. A 98 042132 [30] Xu K, Zhang G F and Liu W M 2019 Phys. Rev. A 100 052305 [31] Wu S X and Yu C S 2020 Sci. Rep. 10 5500 [32] Lu X, Zhang Y J and Xia Y J 2021 Chin. Phys. B 30 020301 [33] Pires D P, Cianciaruso M, Céleri L C, Adesso G and Soares-Pinto D O 2016 Phys. Rev. X 6 021031 [34] Marvian I, Spekkens R W and Zanardi P 2016 Phys. Rev. A 93 052331 [35] Campbell S and Deffner S 2017 Phys. Rev. Lett. 118 100601 [36] Xu Z Y, You W L, Dong Y L, Zhang C and Yang W L 2018 Phys. Rev. A 97 032115 [37] Brody D C and Longstaff B 2019 Phys. Rev. Res. 1 033127 [38] Bukov M, Sels D and Polkovnikov A 2019 Phys. Rev. X 9 011034 [39] Fogarty T, Deffner S, Busch T and Campbell S 2020 Phys. Rev. Lett. 124 110601 [40] Xu T N, Li J, Busch T, Chen X and Fogarty T 2020 Phys. Rev. Res. 2 023125 [41] Suzuki K and Takahashi K 2020 Phys. Rev. Res. 2 032016 [42] Sun S and Zheng Y 2019 Phys. Rev. Lett. 123 180403 [43] Cimmarusti A D, Yan Z, Patterson B D, Corcos L P, Orozco L A and Deffner S 2015 Phys. Rev. Lett. 114 233602 [44] Frey M R 2016 Quantum Inf. Process. 15 3919 [45] Deffner S and Campbell S 2017 J. Phys. A: Math. Theor. 50 453001 [46] Deffner S 2017 New J. Phys. 19 103018 [47] Shiraishi N, Funo K and Saito K 2018 Phys. Rev. Lett. 121 070601 [48] Okuyama M and Ohzeki M 2018 Phys. Rev. Lett. 120 070402 [49] Shanahan B, Chenu A, Margolus N and del Campo A 2018 Phys. Rev. Lett. 120 070401 [50] Nicholson S B, García-Pintos L P, del Campo A and Green J R 2020 Nat. Phys. 16 1211 [51] Wu S X and Yu C S 2020 Chin. Phys. B 29 050302 [52] Hu X, Sun S and Zheng Y 2020 Phys. Rev. A 101 042107 [53] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett. 55 2409 [54] Wu L A, Kimble H J, Hall J L and Wu H 1986 Phys. Rev. Lett. 57 2520 [55] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) [56] Caves C M 1981 Phys. Rev. D 23 1693 [57] Vahlbruch H, Khalaidovski A, Lastzka N, Gräf C, Danzmann K and Schnabel R 2010 Class Quantum Grav. 27 084027 [58] Wu S X, Yu C S and Song H S 2015 Phys. Lett. A 379 1228 [59] Ishizaki A and Tanimura Y 2008 Chem. Phys. 347 185 [60] Wang F Q, Zhang Z M and Liang R S 2009 Chin. Phys. B 18 0597 [61] Wu S X and Yu C S 2017 Int. J. Theor. Phys. 56 1198 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|