Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 107503    DOI: 10.1088/1674-1056/abeee9
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Insights into the regulation mechanism of ring-shaped magnetoelectric energy harvesters via mechanical and magnetic conditions

Yang Shi(师阳)1,2,†, Ni Li(李妮)1,2, and Yong Yang(杨勇)1,2
1 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China;
2 Research Center for Applied Mechanics, Xidian University, Xi'an 710071, China
Abstract  This paper presents a theoretical model for predicting and tuning magnetoelectric (ME) effect of ring-shaped composites, in which stress boundary conditions are empoyed and the multi-field coupling property of giant magnetostrictive materials are taken into account. A linear analytical solutions for the closed- and open-circuit ME voltages are derived simultaneously using mechanical differential equations, interface and boundary conditions, and electrical equations. For nonlinear ME coupling effect, the nonlinear multi-field coupling constitutive equation is reduced to an equivalent form by expanding the strains as a Taylor series in the vicinity of bias magnetic field. Sequentially, the linear model is generalized to a nonlinear one involving the field-dependent material parameters. The results show that setting a stress-free condition is beneficial for reducing resonance frequency while applying clamped conditions on the inner and outer boundaries may improve the maximum output power density. In addition, performing stress conditions on one of the boundaries may enhance ME coupling significantly, without changing the corresponding resonance frequency and optimal resistance. When external stimuli like bias magnetic field and pre-stress are applied to the ring-shaped composites, a novel dual peak phenomenon in the ME voltage curve around resonance frequencies is revealed theoretically, indicating that strong ME coupling may be achieved within a wider bias field region. Eventually, the mutual coordination of the bias field and pre-stress may enhance ME coupling as well as tuning the resonance frequency, and thus is pivotal for tunable control of ME energy harvesters. The proposed model can be applied to design high-performance energy harvesters by manipulating the mechanical conditions and external stimuli.
Keywords:  magnetoelectric effect      boundary conditions      magneto-elastic coupling      external stimuli  
Received:  12 January 2021      Revised:  27 February 2021      Accepted manuscript online:  16 March 2021
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.55.Nv (Multiferroic/magnetoelectric films)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
  75.50.Cc (Other ferromagnetic metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11702202), the Fundamental Research Funds for the Central Universities, China (Grant No. JB210410), and the the National Natural Science Foundation of China (Grant No. 51805401).
Corresponding Authors:  Yang Shi     E-mail:  shiyang@xidian.edu.cn

Cite this article: 

Yang Shi(师阳), Ni Li(李妮), and Yong Yang(杨勇) Insights into the regulation mechanism of ring-shaped magnetoelectric energy harvesters via mechanical and magnetic conditions 2021 Chin. Phys. B 30 107503

[1] Chu Z Q, PourhosseiniAsl M J and Dong S X 2018 J. Phys. D: Appl. Phys. 51 243001
[2] Lu Y W, Hu W B, Liu W and Bai F M 2020 Chin. Phys. B 29 067504
[3] Zhang J J, Du H, Xia X D, Fang C and George J 2020 Mech. Mater. 151 103609
[4] Lasheras A, Gutiérrez J, Reis S, Sousa D, Silva M, Martins P, Lanceros-Mendez S, Barandiarán J M, Shishkin D A and Potapov A P 2015 Smart Mater. Struct. 24 065024
[5] Xiao Y, Zhou H M and Cui X L 2015 Compos. Struct. 128 35
[6] Zhang X L, Zhou J P, Yao X, Yang Z P and Zhang G B 2020 J. Magn. Magn. Mater. 501 166411
[7] Spaldin N A and Ramesh R 2019 Nat. Mater. 18 203
[8] Wang H M, Pan E and Chen W Q 2011 Phys. Status Solidi B 248 2180
[9] Bi K, Wu W, Gu Q L, Cui H N and Wang Y G 2011 J. Alloys Compd. 509 5163
[10] Kuo H Y, Shi C L and Pan E 2020 Int. J. Solids Struct. 195 66
[11] Cheng J H, Wang Y G and Xie D 2005 Appl. Phys. Lett. 86 202504
[12] Dong S X, Zhai J Y, Xing Z P, Li J F and Viehland D 2007 Appl. Phys. Lett. 91 022915
[13] Zhang C L, Chen W Q and Zhang C 2013 J. Appl. Phys. 113 084502
[14] Pan D A, Zhang S G, A Volinsky Alex and Qiao L J 2008 J. Appl. Phys. 41 172003
[15] Wan J G, Li Z Y, Wang Y, Zeng M, Wang G H and Liu J M 2005 Appl. Phys. Lett. 86 2504
[16] Zhang R, Wu G J, Zhang L and Zhang N 2014 Eur. Phys. J. Appl. Phys. 65 10602
[17] Bi K and Wang Y G 2010 Solid State Commun. 150 248
[18] Wang H M, Pan E and Chen W Q 2010 J. Appl. Phys. 107 093514
[19] Gao Y W and Zhang J J 2012 Acta Mech. Sin. 28 385
[20] Amritesh K A 2020 Eur. J. Mech. A-Solid 84 104052
[21] Spaldin N A and Fiebig M 2005 Science 309 391
[22] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[23] Bichurin M I, Petrov V M, Averkin S V and Filippov A V 2010 Phys. Solid State 52 1975
[24] Zhang S Z, Yao H and Gao Y W 2017 J. Magn. Magn. Mater. 428 437
[25] Shi Y, Li N, Wang Y and Ye J J 2021 Compos. Struct. 263 113652
[26] Cui X L and Zhou H M 2015 Chin. Phys. B 24 077506
[27] Subhani S M, Maniprakash S and Arockiarajan A 2018 Mech. Mater. 126 111
[28] Sudersan S and Arockiarajan A 2019 Compos. Struct. 223 110924
[29] Wang Y F, Wang Y Z, Wu B, Chen W Q and Wang Y S 2020 Appl. Mech. Rev. 72 040801
[30] Fan T, Zou G P and Yang L H 2015 Compos. Part B 74 166
[31] Zhang C L, Yang J S and Chen W Q 2009 Appl. Phys. Lett. 95 013511
[32] Gao R, Zhang G, Ioppolo T and Gao X L 2018 J. Micromech. Mol. Phys. 03 1840005
[33] Shi Y, Li N, Ye J J and Ma J 2021 J. Magn. Magn. Mater. 521 167523
[34] Pan E and Heyliger P R 2002 J. Sound Vib. 252 429
[35] Zhang J J 2017 Phys. Lett. A 381 3909
[36] Zheng X J and Liu X E 2005 J. Appl. Phys. 97 053901
[37] Zheng X J and Sun L 2006 J. Appl. Phys. 100 063906
[38] Pei Y M and Fang D N 2008 Smart Mater. Struct. 17 065001
[39] Zheng X J and Sun L 2007 J. Magn. Magn. Mater. 309 263
[40] Annapureddy V, Palneedi H, Hwang, G T, Peddigari M, Jeong D Y, Yoon W H, Kim K H and Ryu J 2017 Sustain. Energy Fuels 1 2039
[41] Zhang W H, Yin G, Gao J W, Bai J M and Wei F L 2012 Appl. Phys. Lett. 100 032903
[42] Liang Y R and Zheng X J 2007 Acta Mech. Solida Sin. 20 283
[43] Altin G, Ho K K, Henry C P and Carman G P 2007 J. Appl. Phys. 101 033537
[44] Ramireza F, Heyligera P R and Pan E 2006 J. Sound Vib. 292 626
[45] Hu S L, Shen S P 2009 CMC Comput. Mater. Continua 13 63
[46] Zhang C L, Chen W Q, Li J Y and Yang Y S 2009 Smart Mater. Struct. 18 095026
[47] Zhao Y P, Lu S T, Kong D J and Zhang C L 2015 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) Jinan, China, 30 October 30-November 2, 2015 pp. 485-489
[48] Li L and Chen X M 2010 Appl. Phys. A 98 761
[49] Zhao C P, Fang F and Yang W 2010 Smart Mater. Struct. 19 125004
[50] Niu L F, Shi Y and Gao Y W 2019 AIP Adv. 9 045216
[51] Clark A E and Savage J P 1975 IEEE Trans. Sonics Ultrason. 22 50
[52] Yang C H, Wen Y M, Li P and Bian L X 2008 Acta Phys. Sin. 57 7292 (in Chinese)
[1] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[2] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[3] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[4] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[5] Magnetoelectric effect in multiferroic NdMn2O5
Syed Hamad Bukhari, Javed Ahmad. Chin. Phys. B, 2017, 26(1): 018103.
[6] Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22
Fen Wang(王芬), Shi-Peng Shen(申世鹏), Young Sun(孙阳). Chin. Phys. B, 2016, 25(8): 087503.
[7] Realization of a flux-driven memtranstor at room temperature
Shi-Peng Shen(申世鹏), Da-Shan Shang(尚大山), Yi-Sheng Chai(柴一晟), Young Sun(孙阳). Chin. Phys. B, 2016, 25(2): 027703.
[8] Localization of quantum walks on finite graphs
Yang-Yi Hu(胡杨熠), Ping-Xing Chen(陈平形). Chin. Phys. B, 2016, 25(12): 120303.
[9] Modulation of electronic properties with external fields in silicene-based nanostructures
Li Geng (李庚), Zhao Yin-Chang (赵银昌), Zheng Rui (郑蕊), Ni Jun (倪军), Wu Yan-Ning (吴言宁). Chin. Phys. B, 2015, 24(8): 087302.
[10] Influence of electron correlations on double-capture process in proton helium collisions
Hoda Ghavaminia, Ebrahim Ghanbari-Adivi. Chin. Phys. B, 2015, 24(7): 073401.
[11] Toward the complete relational graph of fundamental circuit elements
Shang Da-Shan (尚大山), Chai Yi-Sheng (柴一晟), Cao Ze-Xian (曹则贤), Lu Jun (陆俊), Sun Young (孙阳). Chin. Phys. B, 2015, 24(6): 068402.
[12] Projectile angular-differential cross sections for single electron transfer in fast He+-He collisions
Ebrahim Ghanbari-Adivi, Hoda Ghavaminia. Chin. Phys. B, 2015, 24(3): 033401.
[13] Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary
Tan Zhi-Zhong (谭志中). Chin. Phys. B, 2015, 24(2): 020503.
[14] Lumped-equivalent circuit model for multi-stage cascaded magnetoelectric dual-tunable bandpass filter
Zhang Qiu-Shi (张秋实), Zhu Feng-Jie (朱锋杰), Zhou Hao-Miao (周浩淼). Chin. Phys. B, 2015, 24(10): 107506.
[15] Modulation of magnetic properties and enhanced magnetoelectric effects in MnW1-xMoxO4 compounds
Fang Yong (房勇), Zhou Wei-Ping (周卫平), Song Yu-Quan (宋育全), Lü Li-Ya (吕丽娅), Wang Dun-Hui (王敦辉), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(7): 077502.
No Suggested Reading articles found!