1 School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, China; 2 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; 3 School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract A nonlocal circulator protocol is proposed in a hybrid optomechanical system. By analogy with quantum communication, using the input-output relationship, we establish the quantum channel between two optical modes with long-range. The three-body nonlocal interaction between the cavity and the two oscillators is obtained by eliminating the optomechanical cavity mode and verifying the Bell-CHSH inequality of continuous variables. By introducing the phase accumulation between cyclic interactions, the unidirectional transmission of quantum state between the optical mode and two mechanical modes is achieved. The results show that nonreciprocal transmissions are achieved as long as the accumulated phase reaches a certain value. In addition, the effective interaction parameters in our system are amplified, which reduces the difficulty of the implementation of our protocol. Our research can provide potential applications for nonlocal manipulation and transmission control of quantum platforms.
[1] Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J and Zhu S Y 2013 Phys. Rev. Lett.110 093901 [2] Shen H Z, Zhou Y H and Yi X X 2014 Phys. Rev. A90 023849 [3] Zhang W Z, Cheng J, Liu J Y and Zhou L 2015 Phys. Rev. A91 063836 [4] Zhang W Z, Chen L B, Cheng J and Jiang Y F 2019 Phys. Rev. A99 063811 [5] Song L N, Zheng Q, Xu X W, Jiang C and Li Y 2019 Phys. Rev. A100 043835 [6] Wang X, Díaz-Rubio A, Li H, Tretyakov S A and Alú A 2020 Phys. Rev. Applied13 044040 [7] Caridad J M, Tserkezis C, Santos J E, Plochocka P, Venkatesan M, Coey J M D, Mortensen N A, Rikken G L J A and Krstić V 2021 Phys. Rev. Lett.126 177401 [8] Yu T 2020 Phys. Rev. B102 134417 [9] Toyoda S, Abe N and Arima T 2019 Phys. Rev. Lett.123 077401 [10] Liang C, Liu B, Xu A N, Wen X, Lu C, Xia K, Tey M K, Liu Y C and You L 2020 Phys. Rev. Lett.125 123901 [11] Nie W, Shi T, Nori F and Liu Y X 2021 Phys. Rev. Applied15 044041 [12] Lin G, Zhang S, Hu Y, Niu Y, Gong J and Gong S 2019 Phys. Rev. Lett.123 033902 [13] Damanet F, Mascarenhas E, Pekker D and Daley A J 2019 Phys. Rev. Lett.123 180402 [14] Li L, Lee C H and Gong J 2020 Phys. Rev. Lett.124 250402 [15] Lai D G, Huang J F, Yin X L, Hou B P, Li W, Vitali D, Nori F and Liao J Q 2020 Phys. Rev. A102 011502 [16] Mercier de Lépinay L, Ockeloen-Korppi C F, Malz D and Sillanpää M A 2020 Phys. Rev. Lett.125 023603 [17] Malz D, Tóth L D, Bernier N R, Feofanov A K, Kippenberg T J and Nunnenkamp A 2018 Phys. Rev. Lett.120 023601 [18] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys.86 1391 [19] Sanavio C, Peano V and Xuereb A 2020 Phys. Rev. B101 085108 [20] Xu X W, Li Y, Chen A X and Liu Y X 2016 Phys. Rev. A93 023827 [21] Yin J, Cao Y, Li Y H, Liao S K, Zhang L, Ren J G, Cai W Q, Liu W Y, Li B, Dai H, Li G B, Lu Q M, Gong Y H, Xu Y, Li S L, Li F Z, Yin Y Y, Jiang Z Q, Li M, Jia J J, Ren G, He D, Zhou Y L, Zhang X X, Wang N, Chang X, Zhu Z C, Liu N L, Chen Y A, Lu C Y, Shu R, Peng C Z, Wang J Y and Pan J W 2017 Science356 1140 [22] Pan W W, Xu X Y, Kedem Y, Wang Q Q, Chen Z, Jan M, Sun K, Xu J S, Han Y J, Li C F and Guo G C 2019 Phys. Rev. Lett.123 150402 [23] Clader B D 2014 Phys. Rev. A90 012324 [24] Gardiner C W and Collett M J 1985 Phys. Rev. A31 3761 [25] Liu Y C, Xiao Y F, Luan X and Wong C W 2013 Phys. Rev. Lett.110 153606 [26] Chen T Y, Zhang W Z, Fang R Z, Hang C Z and Zhou L 2017 Opt. Express25 10779 [27] Xu X W and Li Y 2015 Phys. Rev. A91 053854 [28] Chen Z B, Pan J W, Hou G and Zhang Y D 2002 Phys. Rev. Lett.88 040406 [29] Braunstein S L, Mann A and Revzen M 1992 Phys. Rev. Lett.68 3259 [30] Xu X W, Chen A X, Li Y and Liu Y X 2017 Phys. Rev. A96 053853 [31] Pirkkalainen J M, Cho S U, Li J, Paraoanu G S, Hakonen P J and Sillanpää M A 2013 Nature494 211 [32] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W 2011 Nature471 204 [33] Bagci T, Simonsen A, Schmid S, Villanueva L G, Zeuthen E, Appel J, Taylor J M, Sorensen A, Usami K, Schliesser A and Polzik E S 2014 Nature507 81 [34] Regal C A, Teufel J D and Lehnert K W 2008 Nat. Phys.4 555 [35] Ma Y, Ma Y Z, Zhou Z Q, Li C F and Guo G C 2021 Nat. Commun.12 2381 [36] Kato S and Aoki T 2015 Phys. Rev. Lett.115 093603 [37] Yang J, Yang Z, Zhao C, Peng R, Chao S and Zhou L 2021 Opt. Express29 36167
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.