CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation |
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅)† |
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China |
|
|
Abstract Single-atom catalysts (SACs) have attracted great interest due to their significant roles played in applications of environmental protection, energy conversion, energy storage, and so on. Using first-principles calculations with dispersion-correction, we investigated the structural stability and catalytic activity of Co implanted CN sheet towards CO oxidation. The adsorption energy of CO and O2 on the catalysts Co@CN and 2Co@CN are close, thus preventing CO poisoning. Among three possible CO oxidation mechanisms, termolecular Eley-Rideal is the most appropriate reaction path, and the corresponding rate-limiting reaction barriers of the two systems are 0.42 eV and 0.38 eV, respectively.
|
Received: 15 March 2021
Revised: 21 April 2021
Accepted manuscript online: 27 April 2021
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
68.43.Bc
|
(Ab initio calculations of adsorbate structure and reactions)
|
|
34.50.Lf
|
(Chemical reactions)
|
|
34.70.+e
|
(Charge transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574167 and 11874033). |
Corresponding Authors:
Xiang-Mei Duan
E-mail: duanxiangmei@nbu.edu.cn
|
Cite this article:
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅) Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation 2021 Chin. Phys. B 30 067104
|
[1] Luo Y, Deng Y Q, Mao W, Yang X J, Zhu K, Xu J and Han Y F 2013 J. Phys. Chem. C 116 20975 [2] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J and Zhang T 2011 Nat. Chem. 3 634 [3] Lin J, Qiao B, Liu J Y, Huang Y Q, Wang A Q, Li L, Zhang W S, Allard L F, Wang X D and Zhang T 2012 Angew. Chem. Int. Ed. Engl. 51 2920 [4] Li F, Li Y, Zeng X C and Chen Z 2014 ACS Catal. 5 544 [5] Eiswirth M and Ertl G 1986 Surf. Sci. 177 90 [6] Yamamoto T, Kasai H and Okiji A 1991 J. Phys. Soc. Japan 60 982 [7] Stampfl C and Scheffler M 1997 Phys. Rev. Lett. 78 1500 [8] Ying C, Hu P, Lee M H and Wang H 2008 Surf. Sci. 602 1736 [9] Jiang Q G, Ao Z M, Li S and Wen Z 2014 RSC Adv. 4 20290 [10] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J and Zhang T 2011 Nat. Chem. 3 634 [11] Dzuba V A, Flambaum V V, Gribakin G F and Harabati C 2012 Phys. Rev. A 86 6691 [12] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902 [13] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 [14] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74 [15] Feldman Y, Wasserman E, Srolovitz D J and Tenne R 1995 Science 267 222 [16] Li Y, Rao Y, Mak K F, You Y and Heinz T F 2013 Nano Lett. 13 3329 [17] Liu L, Feng Y P and Shen Z X 2003 Phys. Rev. B 68 104102 [18] Li Y, Ho W, Lv K, Zhu B and Lee S C 2018 Appl. Surf. Sci. 430 380 [19] Zhi Y, Wang G, Bo M, He J, Zhong M, Zhao W, Li Y, Long X and Zhang W 2018 Mater. Res. Express 6 035910 [20] Rao Y and Duan X 2019 Phys. Chem. Chem. Phys. 21 25743 [21] Long X, Li X, Wei X and Cao J 2019 Chem. Phys. Lett. 725 75 [22] Ouma C N M, Obodo K O, Braun M and Amolo G O 2018 J. Mater. Chem. C 6 4015 [23] Yan H and Yang H 2011 J. Alloys Compd. 509 L26 [24] Liao G, Zhu D, Li L and Lan B 2014 J. Hazard. Mater. 280 531 [25] Liang B, Rao Y and Duan X 2019 RSC Adv. 9 38724 [26] Chen Z and Li F 2018 Nanoscale 10 15696 [27] Rao Y C, Chu Z Q, Gu X and Duan X M 2019 Comput. Mater. Sci. 161 53 [28] Li X, Cui P, Zhong W, Li J, Wang X, Wang Z and Jiang J 2016 Chem. Commun. 52 13233 [29] Zhang G G, Zhang M W, Ye X X, Qiu X Q, Lin S and Wang X C 2014 Adv. Mater. 26 805 [30] Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J and Delmon B 1993 J. Catal. 144 175 [31] Xie X, Yong L, Liu Z Q, Haruta M and Shen W 2009 Nature 458 746 [32] Tang Y, Ma D, Chen W and Dai X 2015 Sens. Actuators B Chem. 211 227 [33] Lu Z, Lv P, Liang Y, Ma D, Zhang Y and Yang Z 2016 Phys. Chem. Chem. Phys 18 21865 [34] Wang S, Li J, Li Q, Bai X and Wang J 2019 Nanoscale 12 364 [35] Kresse G and Furthmüler J 1996 Comput. Mater. Sci. 6 15 [36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [37] Krishtal A, Vannomeslaeghe K, Olasz A, Veszprémi T, Van Alsenoy C and Geerlings P 2010 Physics 130 174101 [38] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [39] Liu X J, Zhou Z F, Yang L W, Li J W, Xie G F, Fu S Y and Sun C Q 2011 J. Appl. Phys. 109 074319 [40] Henkelman G, Uberuaga B P and Jósson H 2000 J. Chem. Phys. 113 9901 [41] Henkelman G, Arnaldsson A and Jósson H 2006 Comput. Mater. Sci. 36 354 [42] Kittel C 2005 Introduction to Solid State Physics 8th ed. (Hoboken, NJ: Wiley) [43] Chen D and Li F 2018 Nanoscale 10 15696 [44] Deng Q, Zhao L and Gao X 2013 Small 9 3506 [45] Xu G, Wang R, Yang F, Ma D, Yang Z and Lu Z 2017 Carbon 118 35 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|