Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067104    DOI: 10.1088/1674-1056/abfbd7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation

Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅)
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  Single-atom catalysts (SACs) have attracted great interest due to their significant roles played in applications of environmental protection, energy conversion, energy storage, and so on. Using first-principles calculations with dispersion-correction, we investigated the structural stability and catalytic activity of Co implanted CN sheet towards CO oxidation. The adsorption energy of CO and O2 on the catalysts Co@CN and 2Co@CN are close, thus preventing CO poisoning. Among three possible CO oxidation mechanisms, termolecular Eley-Rideal is the most appropriate reaction path, and the corresponding rate-limiting reaction barriers of the two systems are 0.42 eV and 0.38 eV, respectively.
Keywords:  first-principles calculations      single-atom catalyst      CO oxidation      rate-limiting reaction barrier  
Received:  15 March 2021      Revised:  21 April 2021      Accepted manuscript online:  27 April 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  34.50.Lf (Chemical reactions)  
  34.70.+e (Charge transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574167 and 11874033).
Corresponding Authors:  Xiang-Mei Duan     E-mail:  duanxiangmei@nbu.edu.cn

Cite this article: 

Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅) Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation 2021 Chin. Phys. B 30 067104

[1] Luo Y, Deng Y Q, Mao W, Yang X J, Zhu K, Xu J and Han Y F 2013 J. Phys. Chem. C 116 20975
[2] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J and Zhang T 2011 Nat. Chem. 3 634
[3] Lin J, Qiao B, Liu J Y, Huang Y Q, Wang A Q, Li L, Zhang W S, Allard L F, Wang X D and Zhang T 2012 Angew. Chem. Int. Ed. Engl. 51 2920
[4] Li F, Li Y, Zeng X C and Chen Z 2014 ACS Catal. 5 544
[5] Eiswirth M and Ertl G 1986 Surf. Sci. 177 90
[6] Yamamoto T, Kasai H and Okiji A 1991 J. Phys. Soc. Japan 60 982
[7] Stampfl C and Scheffler M 1997 Phys. Rev. Lett. 78 1500
[8] Ying C, Hu P, Lee M H and Wang H 2008 Surf. Sci. 602 1736
[9] Jiang Q G, Ao Z M, Li S and Wen Z 2014 RSC Adv. 4 20290
[10] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J and Zhang T 2011 Nat. Chem. 3 634
[11] Dzuba V A, Flambaum V V, Gribakin G F and Harabati C 2012 Phys. Rev. A 86 6691
[12] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[13] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[14] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74
[15] Feldman Y, Wasserman E, Srolovitz D J and Tenne R 1995 Science 267 222
[16] Li Y, Rao Y, Mak K F, You Y and Heinz T F 2013 Nano Lett. 13 3329
[17] Liu L, Feng Y P and Shen Z X 2003 Phys. Rev. B 68 104102
[18] Li Y, Ho W, Lv K, Zhu B and Lee S C 2018 Appl. Surf. Sci. 430 380
[19] Zhi Y, Wang G, Bo M, He J, Zhong M, Zhao W, Li Y, Long X and Zhang W 2018 Mater. Res. Express 6 035910
[20] Rao Y and Duan X 2019 Phys. Chem. Chem. Phys. 21 25743
[21] Long X, Li X, Wei X and Cao J 2019 Chem. Phys. Lett. 725 75
[22] Ouma C N M, Obodo K O, Braun M and Amolo G O 2018 J. Mater. Chem. C 6 4015
[23] Yan H and Yang H 2011 J. Alloys Compd. 509 L26
[24] Liao G, Zhu D, Li L and Lan B 2014 J. Hazard. Mater. 280 531
[25] Liang B, Rao Y and Duan X 2019 RSC Adv. 9 38724
[26] Chen Z and Li F 2018 Nanoscale 10 15696
[27] Rao Y C, Chu Z Q, Gu X and Duan X M 2019 Comput. Mater. Sci. 161 53
[28] Li X, Cui P, Zhong W, Li J, Wang X, Wang Z and Jiang J 2016 Chem. Commun. 52 13233
[29] Zhang G G, Zhang M W, Ye X X, Qiu X Q, Lin S and Wang X C 2014 Adv. Mater. 26 805
[30] Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet M J and Delmon B 1993 J. Catal. 144 175
[31] Xie X, Yong L, Liu Z Q, Haruta M and Shen W 2009 Nature 458 746
[32] Tang Y, Ma D, Chen W and Dai X 2015 Sens. Actuators B Chem. 211 227
[33] Lu Z, Lv P, Liang Y, Ma D, Zhang Y and Yang Z 2016 Phys. Chem. Chem. Phys 18 21865
[34] Wang S, Li J, Li Q, Bai X and Wang J 2019 Nanoscale 12 364
[35] Kresse G and Furthmüler J 1996 Comput. Mater. Sci. 6 15
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Krishtal A, Vannomeslaeghe K, Olasz A, Veszprémi T, Van Alsenoy C and Geerlings P 2010 Physics 130 174101
[38] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[39] Liu X J, Zhou Z F, Yang L W, Li J W, Xie G F, Fu S Y and Sun C Q 2011 J. Appl. Phys. 109 074319
[40] Henkelman G, Uberuaga B P and Jósson H 2000 J. Chem. Phys. 113 9901
[41] Henkelman G, Arnaldsson A and Jósson H 2006 Comput. Mater. Sci. 36 354
[42] Kittel C 2005 Introduction to Solid State Physics 8th ed. (Hoboken, NJ: Wiley)
[43] Chen D and Li F 2018 Nanoscale 10 15696
[44] Deng Q, Zhao L and Gao X 2013 Small 9 3506
[45] Xu G, Wang R, Yang F, Ma D, Yang Z and Lu Z 2017 Carbon 118 35
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!