Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 076301    DOI: 10.1088/1674-1056/abfbcc
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Inverted V-shaped evolution of superconducting temperature in SrBC under pressure

Ru-Yi Zhao(赵如意)1, Xun-Wang Yan(闫循旺)2, and Miao Gao(高淼)1,†
1 Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
2 College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
Abstract  Based on density functional first-principles calculations and anisotropic Eliashberg equations, we have investigated the electronic structure, lattice dynamics, and phonon-mediated superconductivity in newly synthesized layered compound SrBC under pressure. Different from LiBC and MgB2, our calculations surprisingly reveal that SrBC is isotropic in compressibility, due to the accumulation of substantial electrons in the interstitial region. We find that the Sr phonons strongly couple with B-2pz orbital and the interstitial states, giving rise to a two-gap superconductivity in SrBC, whose transition temperature shows an inverted V-shaped dependence on pressure. The maximal transition temperature is about 22 K at 50 GPa. On both sides of 50 GPa, the transition temperature exhibits quasi-linear variation with positive and negative slopes, respectively. Such a variation of transition temperature is infrequent among phonon-mediated superconductors. The competition between enhanced electron-phonon matrix element and hardened phonons plays an essential role in governing the behavior of the critical temperature.
Keywords:  SrBC      phonon-mediated superconductivity      anisotropic Eliashberg theory      first-principles calculation      maximally localized Wannier functions  
Received:  19 March 2021      Revised:  23 April 2021      Accepted manuscript online:  27 April 2021
PACS:  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  63.20.kd (Phonon-electron interactions)  
  74.20.Pq (Electronic structure calculations)  
  74.70.Dd (Ternary, quaternary, and multinary compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974194 and 11974207) and K. C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Miao Gao     E-mail:  gaomiao@nbu.edu.cn

Cite this article: 

Ru-Yi Zhao(赵如意), Xun-Wang Yan(闫循旺), and Miao Gao(高淼) Inverted V-shaped evolution of superconducting temperature in SrBC under pressure 2021 Chin. Phys. B 30 076301

[1] An J M and Pickett W E 2001 Phys. Rev. Lett. 86 4366
[2] Kong Y, Dolgov O V, Jepsen O and Andersen O K 2001 Phys. Rev. B 64 020501
[3] Kortus J, Mazin I I, Belashchenko K D, Antropov V P and Boyer L L 2001 Phys. Rev. Lett. 86 4656
[4] Choi H J, Roundy D, Sun H, Cohen M L and Louie S G 2002 Phys. Rev. B 66 020513
[5] Choi H J, Roundy D, Sun H, Cohen M L and Louie S G 2002 Nature 418 758
[6] Rosner H, Kitaigorodsky A and Pickett W E 2002 Phys. Rev. Lett. 88 127001
[7] Fogg A M, Meldrum J, Darling G R, Claridge J B and Rosseinsky M J 2006 J. Am. Chem. Soc. 128 10043
[8] Bharathi A, Balaselvi S J, Premila M, Sairam T N, Reddy G L N, Sundar C S and Hariharan Y 2002 Solid State Commun. 124 423
[9] Souptela D, Hossainb Z, Behra G, Lösera W and Geibel C 2003 Solid State Commun. 125 17
[10] Fogg A M, Chalker P R, Claridge J B, Darling G R and Rosseinsky M J 2003 Phys. Rev. B 67 245106
[11] Fogg A M, Claridge J B, Darling G R and Rosseinsky M J 2003 Chem. Commun. 12 1348
[12] Gao M, Lu Z Y and Xiang T 2015 Phys. Rev. B 91 045132
[13] Bazhirov T, Sakai Y, Saito S and Cohen M L 2014 Phys. Rev. B 89 045136
[14] Gao M, Yan X W, Lu Z Y and Xiang T 2020 Phys. Rev. B 101 094501
[15] Haque E, Hossain M A and Stampfl C 2019 Phys. Chem. Chem Phys. 21 8767
[16] Zhu L, Borstad G M, Liu H, Guńka P A, Guerette M, Dolyniuk J A, Meng Y, Greenberg E, Prakapenka V B, Chaloux B L, Epshteyn A, Cohen R E and Strobel T A 2020 Sci. Adv. 6 8361
[17] Giannozzi P, Baroni S, Bonini N, et al. 2020 J. Phys.: Condens. Matter 21 395502
[18] Giustino F, Cohen M L and Louie S G 2007 Phys. Rev. B 76 165108
[19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Hamann D R 2013 Phys. Rev. B 88 085117
[21] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[22] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[23] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys.: Condens. Matter 32 165902
[24] Poncé S, Margine E R, Verdi C and Giustino F 2016 Comp. Phys. Commun. 209 116
[25] Choi H J, Cohen M L and Louie S G 2003 Physica C 385 66
[26] Margine E R and Giustino F 2013 Phys. Rev. B 87 024505
[27] Lazicki A, Yoo C S, Cynn H, Evans W J, Pickett W E, Olamit J, Liu K and Ohishi Y 2007 Phys. Rev. B 75 054507
[28] Buzea C and Yamashita T 2001 Supercond. Sci. Technol. 14 115
[29] Eiguren A and Ambrosch-Draxl C 2008 Phys. Rev. B 78 045124
[30] Calandra M, Profeta G and Mauri F 2010 Phys. Rev. B 82 165111
[31] Richardson C F and Ashcroft N W 1997 Phys. Rev. Lett. 78 118
[32] Lee K H, Chang K J and Cohen M L 1995 Phys. Rev. B 52 1425
[33] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[34] Monteverde M, Nu Núñez-Regueiro M, Rogado N, Regan K A, Hayward M A, He T, Loureiro S M and Cava R J 2001 Science 292 75
[35] Lorenz B, Meng R L and Chu C W 2001 Phys. Rev. B 64 012507
[36] Tomita T, Hamlin J J, Schilling J S, Hinks D G and Jorgensen J D 2001 Phys. Rev. B 64 092505
[37] Saito E, Taknenobu T, Ito T, Iwasa Y, Prassides K and Arima T 2001 J. Phys.: Condens. Matter 13 L267
[38] Deemyad S, Schilling J S, Jorgensen J D and Hinks D G 2001 Physica C 361 227
[39] Loa I and Syassen K 2001 Solid State Commun. 118 279
[40] Pogrebnyakov A V, Redwing J M, Raghavan S, Vaithyanathan V Schlom D G, Xu S Y, Li Q, Tenne D A, Soukiassian A, Xi X X, Johannes M D, Kasinathan D, Pickett W E, Wu J S and Spence J C H 2004 Phys. Rev. Lett. 93 147006
[41] Gubser D U and Webb A W 1975 Phys. Rev. Lett. 35 104
[42] Thomasson J, Ayache C, Spain I L and Villedieu M 1990 J. Appl. Phys. 68 5933
[43] Hamlin J J, Tissen V G and Schilling J S 2006 Phys. Rev. B 73 094522
[44] Yabuuchi T, Matsuoka T, Nakamoto Y and Shimizu K 2006 J. Phys. Soc. Jpn. 75 083703
[45] Balster H and Wittig J 1975 J. Low Temp. Phys. 21 377
[46] Porsch F and Holzapfel W B 1993 Phys. Rev. Lett. 70 4087
[47] Tissen V G, Ponyatovskii E G, Nefedova M V, Porsch F and Holzapfel W B 1996 Phys. Rev. B 53 8238
[48] Schilling J S 2007 Physica C 182 460
[49] Chen W, Semenok D V, Troyan I A, Ivanova A G, Huang X, Oganov A R and Cui T 2020 Phys. Rev. B 102 134510
[50] Wan X, Dong J, Weng H and Xing D Y 2001 Phys. Rev. B 65 012502
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!