|
|
Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature |
Ying-Jie Chen(陈英杰)† and Feng-Lan Shao(邵凤兰) |
School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China |
|
|
Abstract We study the property of magnetopolaron in a parabolic quantum dot under the Rashba spin-orbit interaction (RSOI) by adopting an unitary transformation of Lee-Low-Pines type and the variational method of Pekar type with and without considering the temperature. The temporal spatial distribution of the probability density and the relationships of the oscillating period with the RSOI constant, confinement constant, electron-phonon coupling strength, phonon wave vector and temperature are discussed. The results show that the probability density of the magnetopolaron in the superposition of the ground and first excited state takes periodic oscillation (T0/period) in the presence or absence of temperature. Because of the RSOI, the oscillating period is divided into different branches. Also, the results indicate that the oscillating period increases (decreases) when the RSOI constant, electron-phonon coupling strength and phonon wave vector (the confinement constant) increase in a proper temperature, and the temperature plays a significant role in determining the properties of the polaron.
|
Received: 06 February 2021
Revised: 10 April 2021
Accepted manuscript online: 21 April 2021
|
PACS:
|
03.70.+k
|
(Theory of quantized fields)
|
|
71.38.-k
|
(Polarons and electron-phonon interactions)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
75.10.-b
|
(General theory and models of magnetic ordering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975011). |
Corresponding Authors:
Ying-Jie Chen
E-mail: sdchenyingjie@126.com
|
Cite this article:
Ying-Jie Chen(陈英杰) and Feng-Lan Shao(邵凤兰) Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature 2021 Chin. Phys. B 30 110304
|
[1] Boda A 2019 J. Magn. Magn. Mater. 483 83 [2] Horovitz B and Golub A 2019 Phys. Rev. B 99 241407 [3] Chen Z W and Ng T K 2019 Phys. Rev. B 99 235157 [4] Krivobok V S, Nikolaev S N, Onishchenko E E, Pruchkina A A, Chentsov S I, Klokov A Y, Sorokin S V and Sedova I V 2019 J. Lumin. 213 273 [5] Jin Y, Syplyatyev O T, Moreno M, Anthore A, Tan W K, Griffiths J P, Farrer I, Ritchie D A, Glazman L I, Schofifield A J and Ford C J B 2019 Nat. Commun. 10 2821 [6] Van-Tan L, Thang T V, Vy N D and Cao H T 2019 Phys. Lett. A 383 2110 [7] Yang J Y and Chen H J 2019 Acta Phys. Sin. 68 246302 (in Chinese) [8] Hu S, Yang L, Mi M H, et al. 2020 Chin. Phys. B 29 087305 [9] Li S, Shi L and Yan Z W 2020 Chin. Phys. B 29 097802 [10] Harvey-Collard P, Jacobson N T, Bureau-Oxton C, Jock R M, Srinivasa V, Mounce A M, Ward D R, Anderson J M, Manginell R P, Wendt J R, Pluym T, Lilly M P, Luhman D R, Pioro-Ladriére M and Carroll M S 2019 Phys. Rev. Lett. 122 217702 [11] Lahon S, Kumar M, Jha P K and Mohan M 2013 J. Lumin. 144 149 [12] Pan A and Marinescu D C 2019 Phys. Rev. B 99 245204 [13] Rashba E I 1960 Sov. Phys. Solid State 2 1224 [14] Shinjo T 2009 Nanomagnetism and Spintronics (Amstadam: Elsevier Science) [15] Poszwa A 2018 Physica E 99 145 [16] Zhang G, Wang Y and Yan Y 2013 Solid State Commun. 159 98 [17] Yuan R Y, Wang R Z, Duan Z Q, Song X M, Wang B and Yan H 2007 Phys. Lett. A 365 248 [18] Kumar D S, Boda A, Mukhopadhyay S and Chatterjee A 2015 Superlat. Microstruct. 88 174 [19] Khordad R 2018 J. Magn. Magn. Mater. 449 510 [20] Puebla J, Auvray F, Yamaguchi N, Xu M, Bisri S Z, Iwasa Y, Ishii F and Otani Y 2019 Phys. Rev. Lett. 122 256401 [21] Koga T, Sekine Y and Nitta J 2006 Phys. Rev. B 74 041302 [22] Hofmann A, Maisi V F, Krahenmann T, Reichl C, Wegscheider W, Ensslin K and Ihn T 2017 Phys. Rev. Lett. 119 176807 [23] Khordad R and H Bahramiyan 2016 Commun. Theor. Phys. 65 87 [24] Khordad R and Rastegar Sedehi H R 2017 Superlat. Microstruct. 101 559 [25] Khordad R and Rastegar Sedehi H R 2017 Indian J. Phys. 91 825 [26] Khordad R and Rastegar Sedehi H R 2018 J. Low Temperature Phys. 190 200 [27] Tiotsop M, Fotue A J, Fautso G K, Kenfack S C, Mainimo E, Fotsin H B and Fai L C 2016 Chin. J. Phys. 54 795 [28] Sukirti G, Manoj K, Kumar J P and Man M 2016 Chin. Phys. B 25 056502 [29] Chen Y J, Song S T and Xiao J L 2018 Superlat. Microstruct. 118 92 [30] Chen Y J, Song S T and Xiao J L 2018 Indian J. Phys. 92 587 [31] Chen Y J, Song S T and Xiao J L 2018 Superlat. Microstruct. 113 82 [32] Li W P, Li S J, Yin J W, Yu Y F and Wang Z W 2014 Solid State Commun. 192 1 [33] Eslami L, Chaghari Z and Faizabadi E 2013 Phys. Lett. A 377 1459 [34] Hosseinpour P, Soltani-Vala A and Barvestani J 2016 Physica E 80 48 [35] Saini P, Boda A and Chatterjee A 2019 J. Magn. Magn. Mater. 485 407 [36] Khordad R 2015 Physica E 69 249 [37] Vaseghi B, Azizi V, Khosravi M and Owjifard Z 2019 Eur. Phys. J. D 73 51 [38] Scarlino P, Kawakami E, Stano P, Shafiei M, Reichl C, Wegscheider W, and Vandersypen L M K 2014 Phys. Rev. Lett. 113 256802 [39] Könemann J, Haug R J, Maude D K, Falko V I and Altshuler B L 2005 Phys. Rev. Lett. 94 226404 [40] Khosla M, Rao S and Gupta S 2018 Sci. Rep. 8 8385 [41] Khordad R, Bornaei R and Mardani-Fard H A 2015 Indian J. Phys. 89 545 [42] Khordad R and Vaseghi B 2019 Chin. J. Phys. 59 473 [43] Khordad R and Vaseghi B 2019 Int. J. Quantum Chem. 119 20 [44] Lee T D, Low F E and Pines D 1953 Phys. Rev. 90 297 [45] Landau L D and Pekar S I 1948 Zh. Eksp Teor. Fiz. 18 419 [46] Pekar S I 1954 Untersuchungen ber die Elektronentheorie der Kristalle (Berlin: Akademie Verlag) [47] Liu W F, Chen Y J and Shao F L 2019 Superlat. Microstruct. 133 106178 [48] Chen Y J, Cui C F and Song H T 2019 Physica E 111 130 [49] Chen Y J, Cui C F, Liu W F and Shao F L 2020 Int. J. Theor. Phys. 59 1829 [50] Chen Y J, Liu W F and Shao F L 2019 Physica E 110 15 [51] Chen Y J and Zhang P Y 2018 J. Low Temperature Phys. 194 262 [52] Chen Y J and Wang X 2018 Int. J. Theor. Phys. 57 3540 [53] Chen Y J and Xiao J L 2016 J. Low Temperature Phys. 186 241 [54] Chen Y J and Xiao J L 2013 J. Low Temperature Phys. 170 60 [55] Chen Y J and Xiao J L 2012 Chin. J. Quantum Electron. 29 602 [56] Chen Y J and Xiao J L 2008 Acta Phys. Sin. 57 6758 (in Chinese) [57] Chen Y J and Xiao J L 2009 Commun. Theor. Phys. 52 601 [58] Yin J W, Li W P, Yu Y F and Xiao J L 2011 J. Low Temperature Phys. 163 53 [59] Li Z X, Wang J X and Wang L K 2015 Physica B 462 76 [60] Bhattacharyya K, Debnath D and Chatterjee A 2020 J. Magn. Magn. Mater. 506 166745 [61] Liu G H, Guo K X, Wu Q J and Wu J H 2013 Superlat. Microstruct. 53 173 [62] Wu Q J, Guo K X, Liu G H and Wu T H 2013 Physica B 410 206 [63] Liu G H, Guo K X and Wu J H 2013 Superlat. Microstruct. 57 102 [64] Fotue A J, Fobasso M F C, Kenfack S C, Tiotsop M, Djomou J R D, Ekosso C M, Nguimeya G P, Danga J E, Keumo Tsiaze R M and Fai L C 2016 Eur. Phys. J. Plus 131 205 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|