|
|
Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study |
Yade Wang(王亚德)1,2, Zijian Lin(林子荐)1,2, Siwei Xue(薛思玮)1,2, Jiade Li(李佳德)1,2, Yi Li(李毅)1,2, Xuetao Zhu(朱学涛)1,2,3,†, and Jiandong Guo(郭建东)1,2,3,‡ |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Pb(111) film is a special system that exhibits strong quantum size effects in many electronic properties. The collective excitations, i.e., plasmons, in Pb(111) films are also expected to show signatures of the quantum size effect. Here, using high-resolution electron energy loss spectroscopy, we measured the plasmons on the surface of Pb(111) films with different film thicknesses and analyzed the plasmon dispersions. One surface plasmon branch exhibits prominent damping in the small momentum range, which can be attributed to the interaction between the top and bottom interfaces of the Pb(111) films. With the film thickness increasing, the critical momentum characterizing the damping in Pb(111) films decays not only much slower in Pb(111) films than in other metal films, and even in films with the thickness up to 40 monolayers the damping still exists. The slow decay of the surface plasmon damping, manifesting the strong quantum size effect in Pb(111) films, might be related to the strong nesting of the Fermi surface along the (111) direction.
|
Received: 12 April 2021
Revised: 24 April 2021
Accepted manuscript online: 27 April 2021
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
73.21.-b
|
(Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)
|
|
68.49.Jk
|
(Electron scattering from surfaces)
|
|
68.47.De
|
(Metallic surfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874404 and 11634016), the National Key Research and Development Program of China (Grant Nos. 2016YFA0302400, 2016YFA0202300, and 2017YFA0303600), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000). Xuetao Zhu was partially supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences. |
Corresponding Authors:
Xuetao Zhu, Jiandong Guo
E-mail: xtzhu@iphy.ac.cn;jdguo@iphy.ac.cn
|
Cite this article:
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东) Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study 2021 Chin. Phys. B 30 077308
|
[1] Wang Y, Plummer E W and Kempa K 2011 Adv. Phys. 60 799 [2] Chen R K, Yang C, Jia Y P, Guo L W and Chen J N 2019 Chin. Phys. B 28 117302 [3] Andrew P and Barnes W L 2004 Science 306 1002 [4] Arvind, Vengurlekara S and Ishihara T 2005 Appl. Phys. Lett. 87 091118 [5] Maniyara R A, Rodrigo D, Yu R, Canet-Ferrer J, Ghosh D S, Yongsunthon R, Baker D E, Rezikyan A, Abajo F J G D and Pruneri V 2019 Nat. Photon. 13 328 [6] Suo P F, Mao L and Xu H X 2020 Chin. Phys. Lett. 37 017801 [7] Wang Y L, Zhao B, Min C J, Zhang Y Q, Yang J J, Guo C L and Yuan X C 2020 Chin. Phys. B 29 027302 [8] Peng Z X, Shi Z, Min S H, Quan C Z, Jun Q, Wen X S, Jun Z and Gao D H 2019 Acta Phys. Sin. 68 247301 (in Chinese) [9] Yang Y, Zhang G H and Dai X Y 2020 Chin. Phys. B 29 057302 [10] Lin W H, Cao E, Zhang L Q, Xu X F, Song Y Z, Liang W J and Sun M T 2018 Nanoscale 10 5482 [11] Cong S, Liu X H, Jiang Y X, Zhang W and Zhao Z G 2020 The Innovation 1 100051 [12] Politano A and Chiarello G 2015 Prog. Surf. Sci. 90 144 [13] Zhao X K, Yuan Y, Lang P L, Guo H L, Shen X, Wang Y G and Yu R C 2016 Chin. Phys. Lett. 33 026802 [14] Feibelman P J and Hamann D R 1984 Phys. Rev. B 29 6463 [15] Trivedi N and Ashcroft N W 1988 Phys. Rev. B 38 12298 [16] Politano A, Formoso V, Colavita E and Chiarello G 2009 Phys. Rev. B 79 045426 [17] Yu Y H, Jiang Y, Tang Z, Guo Q L, Jia J F, Xue Q K, Wu K H and Wang E G 2005 Phys. Rev. B 72 205405 [18] Yuan Z and Gao S W 2006 Phys. Rev. B 73 155411 [19] Qin H J, Jiang Y, Zhang G H and Wu K H 2013 Appl. Phys. Lett. 102 051605 [20] Zielasek V, Rönitz N, Henzler M and Pfnür H 2006 Phys. Rev. Lett. 96 196801 [21] Yuan Z and Gao S W 2008 Surf. Sci. 602 460 [22] Özer M M, Jia Y, Wu B, Zhang Z Y and Weitering H H 2005 Phys. Rev. B 72 113409 [23] Mans A, Dil J H, Ettema A R H F and Weitering H H 2005 Phys. Rev. B 72 155442 [24] Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X and Xue Q K 2004 Science 306 1915 [25] Özer M M, Thompson J R and Weitering H H 2006 Nat. Phys. 2 173 [26] Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q and Xue Q K 2005 Phys. Rev. Lett. 95 096802 [27] Fu Y S, Ji S H, Chen X, Ma X C, Wu R, Wang C C, Duan W H, Qiu X H, Sun B, Zhang P, Jia J F and Xue Q K 2007 Phys. Rev. Lett. 99 256601 [28] Zhang Z Y, Niu Q and Shih C K 1998 Phys. Rev. Lett. 80 5381 [29] Wu B and Zhang Z Y 2008 Phys. Rev. B 77 035410 [30] Gavioli L, Kimberlin K R, Tringides M C, Wendelken J F and Zhang Z Y 1999 Phys. Rev. Lett. 82 129 [31] Zhu X T, Cao Y W, Zhang S Y, Jia X, Guo Q L, Yang F, Zhu L F, Zhang J D, Plummer E W and Guo J D 2015 Rev. Sci. Instrum. 86 083902 [32] Ganz E, Hwang I S, Xiong F L, Theiss S K and Golovchenko J 1991 Surf. Sci. 257 259 [33] Ibach and Mills D L 1982 Electron energy loss spectroscopy and surface vibrations (New York: Academic) p. 1 [34] Li Y, Zhang J Y, Zhao B, Xue Y and Yang Z Q 2019 Phys. Rev. B 99 195402 [35] Yu X L, Huang L and Wu J S 2017 Phys. Rev. B 95 125113 [36] Sassmannshausen J, Kubetzka A, Hsu P J, Bergmann K V and Wiesendanger R 2018 Phys. Rev. B 98 144443 [37] Bihlmayer G, Sassmannshausen J, Kubetzka A, Blügel S, Bergmann K V and Wiesendanger R 2020 Phys. Rev. Lett. 124 126401 [38] Zubizarreta X, Silkin V M and Chulkov E V 2013 Phys. Rev. B 87 115112 [39] Zubizarreta X, Silkin V M and Chulkov E V 2014 Phys. Rev. B 90 165121 [40] Teng A 2014 Quantum Tuning of Plasmons in Ultrathin Metal Films, Ph. D. Dissertation (Knoxville: University of Tennessee) [41] Zubizarreta X, Chulkov E V, Chernov I P, Vasenko A S, Aldazabal I and Silkin V M 2017 Phys. Rev. B 95 235405 [42] Teng A, Kempa K, Özer M M, Hus S M, Snijders P C, Lee G and Weitering H H 2014 Phys. Rev. B 90 115416 [43] Liebsch A 1987 Phys. Rev. B 36 7378 [44] Liebsch A 1997 Elementary Excitation on Metal Surfaces (New York: Plenum) p. 92 [45] Jia Y, Wu B, Li C, Einstein T L, Weitering H H and Zhang Z Y 2010 Phys. Rev. Lett. 105 066101 [46] Yakes M and Tringides M C 2011 J. Phys. Chem. A 115 7096 [47] Seehofer L, Falkenberg G, Daboul D and Johnson R L 1995 Phys. Rev. B 51 13503 [48] Yuan Z, Jiang Y, Gao Y, Käll M and Gao S W 2011 Phys. Rev. B 83 165452 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|