PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Nonlinear propagation of an intense Laguerre-Gaussian laser pulse in a plasma channel |
Mingping Liu(刘明萍), Zhen Zhang(张震), and Suhui Deng(邓素辉)† |
School of Information Engineering, Nanchang University, Nanchang 330031, China |
|
|
Abstract The nonlinear propagation of an intense Laguerre-Gaussian (LG) laser pulse in a parabolic preformed plasma channel is analyzed by means of the variational method. The evolution equation of the spot size is derived including the effects of relativistic self-focusing, preformed channel focusing, and ponderomotive self-channeling. The parametric conditions of the LG laser pulse and plasma channel for propagating with constant spot size, periodically focusing and defocusing oscillation, catastrophic focusing, and solitary waves are obtained. Compared with the laser pulse with fundamental Gaussian (FG) mode, it is found that the effect of vacuum diffraction is reduced by half and the effects of relativistic and wakefield focusing are decreased by a quarter due to the hollow transverse intensity profile of the LG laser pulse, while the effect of channel focusing is the same order of magnitude with that of the FG laser pulse. Thus, the matched condition for the intense LG laser pulse with constant spot size is released obviously, while the parameters of the laser and plasma for the existence of solitary waves nearly coincide with those of the FG laser pulse.
|
Received: 02 September 2020
Revised: 02 December 2020
Accepted manuscript online: 24 December 2020
|
PACS:
|
52.38.-r
|
(Laser-plasma interactions)
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
52.38.Hb
|
(Self-focussing, channeling, and filamentation in plasmas)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61665006 and 61865011) and the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 20171ACB21018, 20161BAB212041, and 20162BCB23012). |
Corresponding Authors:
Suhui Deng
E-mail: shdeng@ncu.edu.cn
|
Cite this article:
Mingping Liu(刘明萍), Zhen Zhang(张震), and Suhui Deng(邓素辉) Nonlinear propagation of an intense Laguerre-Gaussian laser pulse in a plasma channel 2021 Chin. Phys. B 30 055204
|
[1] Tajima T D and Dawson J M 1979 Phys. Rev. Lett. 43 267 [2] Milchberg H M, Durfee C G and McIlrath T J 1995 Phys. Rev. Lett. 75 2494 [3] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D and Mason R J 1994 Phys. Plasmas 1 1626 [4] Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A and Lefebvre E 2013 Rev. Mod. Phys. 85 1 [5] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229 [6] Esarey E and Leemans W P 1999 Phys. Rev. E 59 1082 [7] Leemans W P, Nagler B, Gonsalves A J, Tóth Cs, Nakamura K, Geddes C G R, Esarey E, Schroeder C B and Hooker S M 2006 Nat. Phys. 2 696 [8] Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T and Downer M C 2006 Nat. Commun. 4 1988 [9] Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Toth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G and Esarey E 2014 Phys. Rev. Lett. 113 245002 [10] Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H,Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Toth C,Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P and Leemans W P 2019 Phys. Rev. Lett. 122 084801 [11] Kneip S, McGuffey C, Martins J L, Martins S F, Bellei C, Chvykov V, Dollar F, Fonseca R, Huntington C, Kalintchenko G, Maksimchuk A, Mangles S P D, Matsuoka T, Nagel S R, Palmer C A J, Schreiber J, Phuoc K, TaThomas A G R, Yanovsky V, Silva L O, Krushelnick K and Najmudin Z 2010 Nat. Phys. 6 980 [12] Tan F, Zhu B, Han D, Xin J T, Zhao Z Q, Cao L F, Gu Y Q and Zhang B H 2014 Chin. Phys. B 23 034104 [13] Chen L M, Lu X, Li D Z and Li Y F 2018 Chin. Phys. B 27 074101 [14] Esarey E,Sprangle P, Krall J and Ting A 1996 IEEE Trans. Plasma Sci. 24 252 [15] Liu M, Guo H, Zhou B, Li W, Li B and Wu G 2004 Phys. Lett. A 333 478 [16] Jha P, Malviya A and Upadhyay A K 2010 Laser Part. Beams 28 245 [17] Zhang S, Hong X R, Wang H Y and Xie B S 2011 Phys. Lett. A 375 4022 [18] Liu M P, Liu B B, Liu S Q, Zhang F Y and Liu J 2013 Commun. Theor. Phys. 60 222 [19] Wang L, Hong X R, Sun J A, Tang R A, Yang Y, Zhou W J, Tian J M and Duan W S 2017 Phys. Lett. A 381 2065 [20] Deng S H and Liu M P 2019 Chin. Phys. B 28 044101 [21] Zhang S, Xie B S, Hong X R, Wang H C and Zhao X Y 2011 Phys. Plasmas 18 033104 [22] Hong X R, Xie B S, Zhang S, Wang H C and Zhao X Y 2011 Phys. Plasmas 18 103106 [23] Mendonca J T and Vieira J 2014 Phys. Plasmas 21 033107 [24] Vieira J and Mendonca J T 2014 Phys. Rev. Lett. 112 215001 [25] Zhang X M, Shen B F, Zhang L G, Xu J C, Wang X F, Wang W P, Yi L G and Shi Y 2014 New J. Phys. 16 123051 [26] Firouzjaei A S and Shokri B 2016 Phys. Plasmas 23 063102 [27] Firouzjaei A S and Shokri B 2017 Phys. Plasmas 24 013107 [28] Zhang G B, Chen M, Schroeder C B, Luo J, Zeng M, Li F Y, Yu L L, Weng S M, Ma Y Y, Yu T P, Sheng Z M and Esarey E 2016 Phys. Plasmas 23 033114 [29] Shen Z C, Chen M, Zhang G B, Luo J, Weng S M, Yuan X H, Liu F and Sheng Z M 2017 Chin. Phys. B 26 115204 [30] Zhu X L, Chen M, Yu T P, Weng S M, Hu L X, McKenna P and Sheng Z M 2018 Appl. Phys. Lett. 112 174102 [31] Hu L X, Yu T P, Sheng Z M, Vieira J, Zou D B, Yin Y, McKenna P and Shao F Q 2018 Sci. Rep. 8 7282 [32] Porras M A 2019 Phys. Rev. Lett. 122 123904 [33] Wang W P, Jiang C, Shen B F, Yuan F, Gan Z M, Zhang H, Zhai S H and Xu Z Z 2019 Phys. Rev. Lett. 122 024801 [34] Cormier-Michel E, Esarey E, Geddes C G R, Schroeder C B, Paul K, Mullowney P J, Cary J R and Leemans W P 2011 Phys. Rev. ST Accel. Beams 14 031303 [35] Anderson D and Bonnedal M 1979 Phys. Fluids 22 105 [36] Wang W M, Sheng Z M, Zeng M, Liu Y, Hu Z D, Kawata S, Zhang C Y, Mori W B, Chen L M, Li Y T and Zhang J 2012 Appl. Phys. Lett. 101 184104 [37] Wang W M, Sheng Z M, Wilson T, Li Y T and Zhang J 2020 Phys. Rev. E 101 011201(R) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|