Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 095205    DOI: 10.1088/1674-1056/ac0e21
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model

Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年)
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber, for neutral beam injection system in CFETR. In this model, the electron effective collision frequency and the ion mobility at high E-fields are employed, for accurate simulation of discharges at low pressures (0.3 Pa-2 Pa) and high powers (40 kW-100 kW). The results indicate that when the high E-field ion mobility is taken into account, the electron density is about four times higher than the value in the low E-field case. In addition, the influences of the magnetic field, pressure and power on the electron density and electron temperature are demonstrated. It is found that the electron density and electron temperature in the xz-plane along permanent magnet side become much more asymmetric when magnetic field enhances. However, the plasma parameters in the yz-plane without permanent magnet side are symmetric no matter the magnetic field is applied or not. Besides, the maximum of the electron density first increases and then decreases with magnetic field, while the electron temperature at the bottom of the expansion region first decreases and then almost keeps constant. As the pressure increases from 0.3 Pa to 2 Pa, the electron density becomes higher, with the maximum moving upwards to the driver region, and the symmetry of the electron temperature in the xz-plane becomes much better. As power increases, the electron density rises, whereas the spatial distribution is similar. It can be summarized that the magnetic field and gas pressure have great influence on the symmetry of the plasma parameters, while the power only has little effect.
Keywords:  negative hydrogen ion source      inductively coupled plasma      three-dimensional fluid model      magnetic field effect  
Received:  14 May 2021      Revised:  21 June 2021      Accepted manuscript online:  24 June 2021
PACS:  52.50.Dg (Plasma sources)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0300106), the National Natural Science Foundation of China (Grant No. 12075049), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. DUT20LAB201 and DUT21LAB110).
Corresponding Authors:  Yu-Ru Zhang, Fei Gao     E-mail:  yrzhang@dlut.edu.cn;fgao@dlut.edu.cn

Cite this article: 

Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年) Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model 2021 Chin. Phys. B 30 095205

[1] Zhang Y R, Gao F and Wang Y N 2021 Acta Phys. Sin. 70 095206 (in Chinese)
[2] Kraus W, Briefi S, Fantz U, Gutmann P and Doerfler J 2014 Rev. Sci. Instrum. 85 02B309
[3] Cavenago M and Petrenko S 2012 Rev. Sci. Instrum. 83 02B503
[4] Todorov D, Tarnev K, Paunska T, Lishev S and Shivarova A 2014 Rev. Sci. Instrum. 85 02B104
[5] Hemsworth R S and Inoue T 2005 IEEE Trans. Plasma Sci. 33 1799
[6] Bacal M and Wada M 2015 Appl. Phys. Rev. 2 021305
[7] Wei J L, Hu C D, Xie Y H, Gu Y M, Liang L Z, Jiang C C and Xie Y L 2019 Rev. Sci. Instrum. 90 113313
[8] Zhang Z Y, Wang G D, Chen C Q, Wei J L, Xie Y L, Tao L, Liang L Z and Hu C D 2019 Fusion Eng. Des. 148 111316
[9] Boeuf J P, Chaudhury B and Garrigues L 2012 Phys. Plasmas 19 113509
[10] Boeuf J P, Claustre J, Chaudhury B and Fubiani G 2012 Phys. Plasmas 19 113510
[11] Lishev S, Schiesko L, Wünderlich D and Fantz U 2017 AIP Conf. Proc. 1869 030042
[12] Lishev S, Schiesko L, Wünderlich D, Wimmer C and Fantz U 2018 Plasma Sources Sci. Technol. 27 125008
[13] Schiesko L, McNeely P, Franzen P, Fantz U and Team N 2012 Plasma Phys. Control. Fusion 54 105002
[14] Fantz U, Schiesko L and Wunderlich D 2014 Plasma Sources Sci. Technol. 23 044002
[15] Coupland J R, Green T S, Hammond D P and Riviere A C 1973 Rev. Sci. Instrum. 44 1258
[16] Turner M M 1993 Phys. Rev. Lett. 71 1844
[17] Gao F, Li H, Yang W, Liu J, Zhang Y R and Wang Y N 2018 Phys. Plasmas 25 013515
[18] Kudryavtsev A A and Serditov K Y 2012 Phys. Plasmas 19 073504
[19] Lieberman M A and Lichtenberg A J 2005 Principles of plasma discharges and materials processing, 2nd edn. (New York: Wiley-Interscience)
[20] Yang W, Li H, Gao F and Wang Y N 2016 Phys. Plasmas 23 123517
[21] Hagelaar G J M 2008 Phys. Rev. Lett. 100 025001
[22] Hagelaar G J M 2008 Plasma Sources Sci. Technol. 17 025017
[23] Yang W, Averkin S N, Khrabrov A V, Kaganovich I D, Wang Y N, Aleiferis S and Svarnas P 2018 Phys. Plasmas 25 113509
[24] Janev R K, Reiter D and Samm U 2003 Collision processes in low temperature hydrogen plasmas (Forschungszentrum Jülich: Zentralbibliothek)
[25] Chabert P and Braithwaite N 2011 Physics of radio-frequency plasmas. (Cambridge: Cambridge University Press)
[26] Smirnov B M 2015 Theory of Gas Discharge Plasma (Cham: Springer International Publishing)
[27] Zhang Y R, Xu X, Bogaerts A and Wang Y N 2012 J. Phys. D: Appl. Phys. 45 015203
[28] Yan W, Liu F C, Sang C F and Wang D Z 2015 Chin. Phys. B 24 065203
[29] Bleecker K D, Bogaerts A, and Gijbels R 2004 Phys. Rev. E 69 056409
[30] Schiesko L, Franzen P and Fantz U 2012 Plasma Sources Sci. Technol. 21 065007
[1] Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas
Wei Liu(刘巍), Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), You-Nian Wang(王友年), and Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2021, 30(6): 065202.
[2] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[3] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[4] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[5] Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge
Xiang-Yun Lv(吕翔云), Fei Gao(高飞), Quan-Zhi Zhang(张权治), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(4): 045202.
[6] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[7] Magnetochemistry and chemical synthesis
Lin Hu(胡林), Guoliang Xia(夏国良), Qianwang Chen(陈乾旺). Chin. Phys. B, 2019, 28(3): 037102.
[8] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[9] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[10] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[11] Plasma-assisted surface treatment for low-temperature annealed ohmic contact on AlGaN/GaN heterostructure field-effect transistors
Lei Wang(王磊), Jiaqi Zhang(张家琦), Liuan Li(李柳暗), Yutaro Maeda(前田裕太郎), Jin-Ping Ao(敖金平). Chin. Phys. B, 2017, 26(3): 037201.
[12] Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature
Liuan Li(李柳暗), Jiaqi Zhang(张家琦), Yang Liu(刘扬), Jin-Ping Ao(敖金平). Chin. Phys. B, 2016, 25(3): 038503.
[13] Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model
Xu Hui-Jing (徐会静), Zhao Shu-Xia (赵书霞), Gao Fei (高飞), Zhang Yu-Ru (张钰如), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2015, 24(11): 115201.
[14] Progress in organic spintronics
Yang Fu-Jiang (杨福江), Han Shi-Xuan (韩士轩), Xie Shi-Jie (解士杰). Chin. Phys. B, 2014, 23(5): 058106.
[15] Electronic dynamic behavior in inductively coupled plasmas with radio-frequency bias
Gao Fei (高飞), Zhang Yu-Ru (张钰如), Zhao Shu-Xia (赵书霞), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2014, 23(11): 115202.
No Suggested Reading articles found!