Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 098501    DOI: 10.1088/1674-1056/ac11ce
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model

Yue Geng(耿悦)1,2,3, Pei-Zhan Li(李佩展)1,2,3, Jia-Qiang Zhong(钟家强)1,3, Wen Zhang(张文)1,3,†, Zheng Wang(王争)1,3, Wei Miao(缪巍)1,3, Yuan Ren(任远)1,3, and Sheng-Cai Shi(史生才)1,3,‡
1 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing 210023, China
Abstract  Optical superconducting transition-edge sensor (TES) has been widely used in quantum information, biological imaging, and fluorescence microscopy owing to its high quantum efficiency, low dark count, and photon number resolving capability. The temperature sensitivity (αI) and current sensitivity (βI) are important parameters for optical TESs, which are generally extracted from the complex impedance. Here we present a method to extract αI and βI based on a two-fluid model and compare the calculated current-voltage curves, pulse response, and theoretical energy resolution with the measured ones. This method shows qualitative agreement that is suitable for further optimization of optical TESs.
Keywords:  transition-edge sensor      single-photon detector      two-fluid model  
Received:  30 March 2021      Revised:  23 June 2021      Accepted manuscript online:  07 July 2021
PACS:  85.25.Oj (Superconducting optical, X-ray, and γ-ray detectors (SIS, NIS, transition edge))  
  85.25.Am (Superconducting device characterization, design, and modeling)  
Fund: Project supported by the National Key Basic Research and Development Program of China (Grant No. 2017YFA0304003), the National Natural Science Foundation of China (Grant Nos. U1831202, U1731119, U1931123, 11773083, and 11873099), the Chinese Academy of Sciences (Grant Nos. QYZDJ-SSW-SLH043 and GJJSTD20180003), and Jiangsu Province, China (Grant No. BRA2020411).
Corresponding Authors:  Wen Zhang, Sheng-Cai Shi     E-mail:  wzhang@pmo.ac.cn;scshi@pmo.ac.cn

Cite this article: 

Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才) Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model 2021 Chin. Phys. B 30 098501

[1] Giustina M, Versteegh M A M, Wengerowsky S, Handsteiner J, Hochrainer A, Phelan K, Steinlechner F, Kofler J, Larsson J, Abellán C, Amaya W, Pruneri V, Mitchell M W, Beyer J, Gerrits T, Lita A E, Shalm L K, Nam S W, Scheidl T, Ursin R, Wittmann B and Zeilinger A 2015 Phys. Rev. Lett. 115 250401
[2] Niwa K, Numata T, Hattori K and Fukuda D 2017 Sci. Rep. 7 45660
[3] Fukuda D, Niwa K, Hattori K, Inoue S, Kobayashi R and Numata T 2018 J. Low Temp. Phys. 193 1228
[4] Lita A E, Miller A J and Nam S W 2008 Opt. Express 16 3032
[5] Fukuda D, Fujii G, Numata T, Amemiya K, Yoshizawa A, Tsuchida H, Fujino H, Ishii H, Itatani T, Inoue S and Zama T 2011 Opt. Express 19 870
[6] Portesi C, Taralli E, Lolli L, Rajteri M and Monticone E 2015 IEEE Trans. Appl. Supercond. 25 1
[7] Lolli L, Taralli E, Portesi C, Monticone E and Rajteri M 2013 Appl. Phys. Lett. 103 041107
[8] Irwin K D and Hilton G C 2005 Transition-Edge Sensors in Cryogenic Particle Detection (Berlin: Springer) pp. 63-150
[9] Taralli E, Portesi C, Lolli L, Monticone E, Rajteri M, Novikov I and Beyer J 2010 Supercond. Sci. Technol. 23 105012
[10] Hattori K, Kobayashi R, Numata T, Inoue S and Fukuda D 2018 J. Low Temp. Phys. 193 217
[11] Irwin K D, Hilton G C, Wollman D A and Martins J M 1998 J. Appl. Phys. 83 3978
[12] Bennett D A, Swetz D S, Horansky R D, Schmidt D R and Ullom J N 2012 J. Low Temp. Phys. 167 102
[13] Bennett D A, Swetz D S, Schmidt D R and Ullom J N 2013 Phys. Rev. B 87 020508
[14] Morgan K M, Pappas C G, Bennett D A, Gard J D, Hays-Wehle J P, Hilton G C, Reintsema C D, Schmidt D R, Ullom J N and Swetz D S 2017 Appl. Phys. Lett. 110 212602
[15] Wang Z, Zhang W, Miao W, Liu D, Zhong J Q and Shi S C 2018 IEEE Trans. Appl. Supercond. 28 2100204
[16] Geng Y, Zhang W, Li P Z, Zhong J Q, Wang Z, Miao W, Ren Y, Wang J F, Yao Q J and Shi S C 2020 J. Low Temp. Phys. 199 556
[17] Hattori K, Kobayashi R, Takasu S and Fukuda D 2020 AIP Advances 10 035004
[18] Lolli L, Taralli E, Rajteri M, Numata T and Fukuda D 2013 IEEE Trans. Appl. Supercond. 23 2100904
[19] Lindeman M A, Bandler S, Brekosky R P, Chervenak J A, Figueroa-Feliciano E, Finkbeiner F M, Li M J and Kilbourne C A 2004 Rev. Sci. Instrum. 75 1283
[20] Kozorezov A G, Wigmore J K, Martin D, Verhoeve P and Peacock A 2006 Appl. Phys. Lett. 89 223510
[21] Lolli L, Brida G, Degiovanni I P, Gramegna M, Monticone E, Piacentini F, Portesi C, Rajteri M, Ruo Berchera I, Taralli E and Traina P 2011 Inter. J. Quant. Inform. 9 405
[22] Zhang W, Wang Z, Zhong J Q, Li P Z, Geng Y, Miao W, Ren Y, Zhou K M, Yao Q J and Shi S C 2021 IEEE Trans. Appl. Supercond. 31 2101205
[1] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[2] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[3] Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams
Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵). Chin. Phys. B, 2021, 30(11): 117401.
[4] Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector
Yong Wang(王勇), Hao Li(李浩), Li-Xing You(尤立星), Chao-Lin Lv(吕超林), He-Qing Wang(王河清), Xing-Yu Zhang(张兴雨), Wei-Jun Zhang(张伟君), Hui Zhou(周慧), Lu Zhang(张露), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2019, 28(7): 078502.
[5] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[6] Bias-dependent timing jitter of 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode
Ge Zhu(朱阁), Fu Zheng(郑福), Chao Wang(王超), Zhibin Sun(孙志斌), Guangjie Zhai(翟光杰), Qing Zhao(赵清). Chin. Phys. B, 2016, 25(11): 118505.
[7] Countermeasure against probabilistic blinding attack in practical quantum key distribution systems
Qian Yong-Jun (钱泳君), Li Hong-Wei (李宏伟), He De-Yong (何德勇), Yin Zhen-Qiang (银振强), Zhang Chun-Mei (张春梅), Chen Wei (陈巍), Wang Shuang (王双), Han Zheng-Fu (韩正甫). Chin. Phys. B, 2015, 24(9): 090305.
[8] Performance of superconducting nanowire single-photon detector with the fan coupling antenna array
Wang Yu-Jue (王玉珏), Ding Tian (丁天), Ma Hai-Qiang (马海强), Jiao Rong-Zhen (焦荣珍). Chin. Phys. B, 2014, 23(6): 060308.
[9] Resonant cavity-enhanced quantum dot field-effect transistor as a single-photon detector
Dong Yu (董宇), Wang Guang-Long (王广龙), Wang Hong-Pei (王红培), Ni Hai-Qiao (倪海桥), Chen Jian-Hui (陈建辉), Gao Feng-Qi (高凤岐), Qiao Zhong-Tao (乔中涛), Yang Xiao-Hong (杨晓红), Niu Zhi-Chuan (牛智川). Chin. Phys. B, 2014, 23(10): 104209.
No Suggested Reading articles found!