Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 055206    DOI: 10.1088/1674-1056/abd758
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak

Yong-Kuan Zhang(张永宽)1,2, Rui-Jie Zhou(周瑞杰)1, Li-Qun Hu(胡立群)1,†, Mei-Wen Chen(陈美文)1,2, Yan Chao(晁燕)1,2, Jia-Yuan Zhang(张家源)1,2, and Pan Li(李磐)1,2
1 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China
Abstract  In EAST, synchrotron radiation is emitted by runaway electrons in the infrared band, which can be observed by infrared cameras. This synchrotron radiation is mainly emitted by passing runaway electrons with tens of MeV energy. A common feature of radiation dominated by passing runaway electrons is that it is strongest on the high field side. However, the deeply trapped runaway electrons cannot reach the high field side in principle. Therefore, in this case, the high field side radiation is expected to be weak. This paper reports for the first time that the synchrotron radiation from trapped runaway electrons dominates that from passing runaway electrons and is identifiable in an image. Although the synchrotron radiation dominated by trapped runaway electrons can be observed in experiment, the proportion of trapped runaway electrons is very low.
Keywords:  tokamak      trapped runaway electron      synchrotron radiation  
Received:  09 October 2020      Revised:  17 December 2020      Accepted manuscript online:  30 December 2020
PACS:  52.70.Nc (Particle measurements)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11775263) and the National Magnetic Confinement Fusion Energy Research Project of China (Grant No. 2015GB111003).
Corresponding Authors:  Li-Qun Hu     E-mail:  lqhu@ipp.ac.cn

Cite this article: 

Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐) Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak 2021 Chin. Phys. B 30 055206

[1] Dreicer H 1959 Phys. Rev. 115 238
[2] Hoppe M, Embréus O, Tinguely R A, et al. 2018 Nuclear Fusion 58 026032
[3] Paz-Soldan C, Cooper C M, Aleynikov P, et al. 2017 Phys. Rev. Lett. 118 255002
[4] Zhou R J, Hu L Q, Zhang Y, et al. 2017 Nuclear Fusion 57 114002
[5] Boozer A H 2017 Nuclear Fusion 57 056018
[6] Schwinger J 1949 Phys. Rev. 75 1912
[7] Jaspers R, Lopes Cardozo N J, Donne A J H, et al. 2001 Rev. Sci Instrum. 72 466
[8] Xiao M, Zhou R J, Hu L Q, et al. 2017 Phys. Plasmas 24 124504
[9] Zhang Y K, Zhou R J, Hu L Q, et al. 2018 Chin. Phys. B 27 055206
[10] Zhou R J, Pankratov I M, Hu L Q, et al. 2014 Phys. Plasmas 21 063302
[11] del-Castillo-Negrete D, Carbajal L, Spong D, et al. 2018 Phys. Plasmas 25 056104
[12] Nilsson E, Decker J, Peysson Y, et al. 2015 Plasma Phys. Control. Fusion 57 095006
[13] Hesslow L, Embréus O, Stahl A, et al. 2017 Phys. Rev. Lett. 118 255001
[14] Liu C, Shi L, Hirvijoki E, et al. 2018 Nuclear Fusion 58 096030
[15] Shi Y, Fu J, Li J, et al. 2010 Rev. Sci. Instrum. 81 033506
[16] Cheon M, Kim J, An Y, et al. 2016 Nuclear Fusion 56 126004
[17] Cheon M, Seo D and Kim J 2018 Nuclear Fusion 58 046020
[18] England A C, Chen Z Y, Seo D C, et al. 2013 Plasma Sci. Technol. 15 119
[19] Yu J H, Hollmann E M, Commaux N, et al. 2013 Phys. Plasmas 20 042113
[20] Hoppe M, Embreus O, Paz-Soldan C, et al. 2018 Nuclear Fusion 58 082001
[21] Paz-Soldan C, Cooper C M, Aleynikov P, et al. 2018 Phys. Plasmas 25 056105
[22] Hollmann E M, Parks P B, Commaux N, et al. 2015 Phys. Plasmas 22 056108
[23] Pankratov I M 1996 Plasma Phys. Rep. 22 535
[24] Abdullaev S S, Finken K H and Forster M 2012 Phys. Plasmas 19 072502
[25] Zhou R J, Hu L Q, Li E Z, et al. 2013 Plasma Physics and Control. Fusion 55 055006
[26] Guan X, Qin H and Fisch N J 2010 Phys. Plasmas 17 092502
[27] Martin-Solis J R, Alvarez J D, Sánchez R et al. 1998 Phys. Plasmas 5 2370
[28] Martin-Solis J R, Esposito B, Sanchez R et al. 1999 Phys. Plasmas 6 238
[29] Spong D A, Heidbrink W W, Paz-Soldan C, et al. 2018 Phys. Rev. Lett. 120 155002
[1] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[2] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[3] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[4] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[5] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[6] Pressure-induced isostructural phase transition in α-Ni(OH)2 nanowires
Xin Ma(马鑫), Zhi-Hui Li(李志慧), Xiao-Ling Jing(荆晓玲), Hong-Kai Gu(顾宏凯), Hui Tian(田辉), Qing Dong(董青), Peng Wang(王鹏), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), Zhen Yao(姚震), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2019, 28(6): 066402.
[7] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[8] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[9] Energetic-ion excited internal kink modes with weak magnetic shear in q0 >1 tokamak plasmas
Wen-Ming Chen(陈文明), Xiao-Gang Wang(王晓钢), Xian-Qu Wang(王先驱), Rui-Bin Zhang(张瑞斌). Chin. Phys. B, 2017, 26(8): 085201.
[10] Fast parallel Grad-Shafranov solver for real-time equilibrium reconstruction in EAST tokamak using graphic processing unit
Yao Huang(黄耀), Bing-Jia Xiao(肖炳甲), Zheng-Ping Luo(罗正平). Chin. Phys. B, 2017, 26(8): 085204.
[11] Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration
Xueke Wu(吴雪科), Huidong Li(李会东), Zhanhui Wang(王占辉), Hao Feng(冯灏), Yulin Zhou(周雨林). Chin. Phys. B, 2017, 26(6): 065201.
[12] Structural stability of ultra-high temperature refractory material MoSi2 and Mo5Si3 under high pressure
Hao Liang(梁浩), Fang Peng(彭放), Cong Fan(樊聪), Qiang Zhang(张强), Jing Liu(刘景), Shi-Xue Guan(管诗雪). Chin. Phys. B, 2017, 26(5): 053101.
[13] Anomalous behavior and phase transformation of α -GaOOH nanocrystals under static compression
Zhao Zhang(张钊), Hang Cui(崔航), Da-Peng Yang(杨大鹏), Jian Zhang(张剑), Shun-Xi Tang(汤顺熙), Si Wu(吴思), Qi-Liang Cui(崔啟良). Chin. Phys. B, 2017, 26(10): 106402.
[14] Observation of selective surface element substitution in FeTe0.5Se0.5 superconductor thin film exposed to ambient air bysynchrotron radiation spectroscopy
Nian Zhang(张念), Chen Liu(刘晨), Jia-Li Zhao(赵佳丽), Tao Lei(雷涛), Jia-Ou Wang(王嘉鸥), Hai-Jie Qian(钱海杰), Rui Wu(吴蕊), Lei Yan(颜雷), Hai-Zhong Guo(郭海中), Kurash Ibrahim(奎热西). Chin. Phys. B, 2016, 25(9): 097402.
[15] High pressure x-ray diffraction techniques with synchrotron radiation
Jing Liu(刘景). Chin. Phys. B, 2016, 25(7): 076106.
No Suggested Reading articles found!