Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 046802    DOI: 10.1088/1674-1056/abd46d
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First principles study of behavior of helium at Fe(110)-graphene interface

Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松)
1 Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
Abstract  Recently, metal-graphene nanocomposite system has aroused much interest due to its radiation tolerance behavior. However, the related atomic mechanism for the metal-graphene interface is still unknown. Further, stainless steels with Fe as main matrix are widely used in nuclear systems. Therefore, in this study, the atomic behaviors of point defects and helium (He) atoms at the Fe(110)-graphene interface are investigated systematically by first principles calculations. The results indicate that graphene interacts strongly with the Fe(110) substrate. In comparison with those of the original graphene and bulk Fe, the formation energy values of C vacancies and Fe point defects decrease significantly for Fe(110)-graphene. However, as He atoms have a high migration barrier and large binding energy at the interface, they are trapped at the interface once they enter into it. These theoretical results suggest that the Fe(110)-graphene interface acts as a strong sink that traps defects, suggesting the potential usage of steel-graphene with multiply interface structures for tolerating the radiation damage.
Keywords:  Fe(110)-graphene      helium      interface      first principles calculations  
Received:  18 August 2020      Revised:  11 December 2020      Accepted manuscript online:  17 December 2020
PACS:  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  68.65.Pq (Graphene films)  
Fund: Project supported by the Nuclear Power Technology Innovation Center Program, National Defense Science & Technology Industry, China (Grant No. HDLCXZX-2019-ZH-028).
Corresponding Authors:  Corresponding author. E-mail: huangss@dlut.edu.cn   

Cite this article: 

Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松) First principles study of behavior of helium at Fe(110)-graphene interface 2021 Chin. Phys. B 30 046802

1 Murty K L and Charit I 2008 J. Nucl. Mater. 383 189
2 Trinkaus H and Singh B 2003 J. Nucl. Mater. 323 229
3 Lucas A 1984 Physical B + C 127 225
4 Zinkle S J 2005 Phys. Plasmas 12 058101
5 Wirth B D 2007 Science 318 923
6 Arakawa K, Ono K, Isshiki M, Mimura K, Uchikoshi Mand Mori H 2007 Science 318 956
7 Bai X M, Voter A F, Hoagland R G, Nastasi M and Uberuaga B P 2010 Science 327 1631
8 Ackland G 2010 Science 327 1587
9 Xu H X, Stoller R E, Osetsky Y N and Terentyev D 2013 Phys. Rev. Lett. 110 265503
10 Dai Y Y, Ao L, Sun Q Q, Yang L, Nie J L, Peng S M, Long X G, Zhou X S, Zu X T, Liu L, Sun X, Terentyen D and Gao F 2015 Comp. Mater. Sci. 101 293
11 Heinisch H L, Gao F and Kurtz R J 2004 J. Nucl. Mater. 329-333 924
12 Zhernenkov M, Gill S, Stanic V, DiMasi E, Kisslinger K, Baldwin J K, Misra A, Demkowicz M J and Ecker L 2014 Appl. Phys. Lett. 104 241906
13 Huang H, Tang X, Chen F, Liu Jian, Sun X and Ji L 2018 J. Nucl. Mater. 510 1
14 Han W, Demkowicz MJ, Mara N A, Fu E, Sinha S, Rollett A D, Wang Y, Carpenter J S, Beyerlein I J and Misra A 2013 Adv. Mater. 25 6975
15 Gonzales C and Iglesias R 2016 Mater. Des. 91 171
16 Lach T G, Ekiz E H, Averback R S, Mara N A and Bellon P 2015 J. Nucl. Mater. 466 36
17 Chen D, Li N, Ding Y, Wen J, Baldwin K, Demkowicz M J and Wang Y 2017 Mater. Res. Lett. 5 335
18 Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
19 Balandin A A 2011 Nat. Mater. 10 569
20 Zhang C, Zhao W, Bi K, Ma J, Wang J, Ni Z, Ni Z and Chen Y 2013 Carbon 64 61
21 Huang H, Tang X, Chen F, Yang Y, Liu J, Li H and Chen D 2015 J. Nucl. Mater. 460 16
22 Huang H, Tang X, Chen F, Gao F, Peng Q and Ji L 2018 J. Alloys Compd. 765 253
23 Kim Y, Beak J, Kim S, Kim S, Ryu S, Jeon S and Han S M 2016 Sci. Rep. 6 24785
24 Ishizaki T, Xu Q, Yoshiie T, Nagata S and Troev T 2002 J. Nucl. Mater. 307-311 961
25 Katoh Y, Ando M and Kohyama A 2003 J. Nucl. Mater. 323 251
26 Stewart D, Osetskiy Y and Stoller R 2011 J. Nucl. Mater. 417 1110
27 Caro A, Hetherly J, Stukowski A, Caro M, Martinez E, Srivilliputhur S, Zepeda-Ruiz L and Nastasi M 2011 J. Nucl. Mater. 418 261
28 Abhishek A, Warrier M, Ganesh R and Caro A 2016 J. Nucl. Mater. 472 82
29 Hammond K D, Blondel S, Hu L, Maroudas D and Wirth B D 2018 Acta Mater. 144 561
30 Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
31 Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
32 Kresse G 1995 J. Non-cryst. Solids 192-193 222
33 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
34 Blöchl P E 1994 Phys. Rev. B 50 17953
35 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
36 Perdew J P, Chevary J, Vosko S, Jackson K A, Pederson M R, Singh D and Fiolhais C 1992 Phys. Rev. B 46 6671
37 Perdew J P, Burke K, Ernzerhof M and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
38 Crimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
39 Vinogradov N A, Zakharov A A, Kocevski V, Rusz J, Simonov K A, Eriksson O and Mikkelsen A 2012 Phys. Rev. Lett. 109 026101
40 Pei W, Zhou S, Bai Y and Zhao J 2018 Carbon 133 260
41 Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, van den Brink J and Kelly P J 2009 Phys. Rev. B 79 195425
42 Dai X, Zhao J, Xie M, Tang Y, Li Y and Zhao B 2011 Eur. Phys. J. B 80 343
43 HenKelman G and Jònsson H 2000 J. Chem. Phys. 113 9978
44 Henkelman G, Uberuaga B P and Jònsson H 2000 J. Chem. Phys. 113 9901
45 Sun D, Ding J H, Huang S S, Zhang P B and Zhao J J 2018 J. Alloys Compd. 741 900
46 Batzill M 2012 Surf. Sci. Rep. 67 83
47 Liu W, Wang W, Wang J, Wang F, Lu C, Jin F, Zhang A, Zhang Q, van der Laan G, Xu Y B, Li Q X and Zhang R 2015 Sci. Rep. 5 11911
48 Cabrera M F, Baskes M I, V Melechko Anatoil and L Simpson Michael 2008 Phys. Rev. B 77 035405
49 Sutter P, Sadowski T and Sutter E 2009 Phys. Rev. B 80 245411
50 Pacilé D, Lisi S, Bernardo I D, Papagno M, Ferrari L, Pisarra M, Caputo M, Mahatha S K, Sheverdyaeva P M, Moras P, Lacovig P, Lizzit S, Baraldi A, Betti M G and Carbone C 2014 Phys. Rev. B 90 195446
51 Preobrajenski A B, Ng M L, Vinogradov A S and Martensson N 2008 Phys. Rev. B 78 073401
52 Rusz J, Preobrajenski A B, Ng M, Vinogradov A S, Martensson N and Wessely O 2010 Phys. Rev. B 81 0733402
53 Weser M, Rehder Y, Horn K, Sicot M, Fonin M, Preobrajenski A B, Voloshina E N, Goering E and Dedkov Y S 2010 Appl. Phys. Lett. 96 012504
54 Dedkov Y S and Fonin M 2010 New J. Phys. 12 125004
55 Liu W, Wang W and Wang J 2015 Sci. Rep.
56 Ma B, Cong C, Wen Y, Chen R, Cho K and Shan B 2014 J. Appl. Phys. 115 183708
57 Yang T, Yang L, Liu H, Zhou H, Peng S, Zhou X, Gao F and Zu X 2017 J. Alloys Compd. 692 49
58 Adamska L, Lin Y, Ross A J, Batzill M and Oleynik I I 2012 Phys. Rev. B 85 195443
59 Duffy D 2010 Phil. Trans. R. Soc A 368 3315
60 Stoller R E 1990 J. Nucl. Mater. 174 289
61 Hsiung L L, Fluss M J, Tumey S J, Choi B W, Serruys Y, Willaime F and Kimura A 2010 Phys. Rev. B 82 184103
62 Gilbert M R, Dudarev S L, Manh D N, Zheng S, Packer L W and Sublet J C 2013 J. Nucl. Mater. 442 S755
63 Puska M J, Nieminen R M and Manninen M 1981 Phys. Rev. B 24 3037
64 Sen H S and Polcar T 2019 J. Nucl. Mater. 518 11
65 Saikia U, Sahariah M B, Gonzàlez C and Pandey R 2018 Sci. Rep. 8 3844
66 Scott Bunch J, Verbridge S S, Aiden J S, van der Zande A M, Parpia J M, Craighead H G and McEuen P L 2008 Nano Lett. 8 2458
67 Leenaerts O, Partoens B and Peeters F M 2008 Appl. Phys. Lett. 93 193107
[1] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[6] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[7] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[12] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[13] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[14] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[15] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
No Suggested Reading articles found!