Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 037301    DOI: 10.1088/1674-1056/abc53c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Nonlinear photoncurrent in transition metal dichalcogenide with warping term under illuminating of light

Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏)†, and Yun-Hai Zhang(张运海)‡
1 School of Physics and Electronic Engineering, Heze University, Heze 274015, China
Abstract  We investigate the photoconductivities of injection current and the shift current in transition metal dichalcogenide with warping term in the presence of sublattice potential and spin orbit coupling. The system shows the valley photoconductivities of injection current and the photoconductivities of shift current. It is found that the warping term and the geometric tensor play a critical role in the system, which are responsible for the photoconductivities. Due to the interplay between the sublattice potential and the spin orbit coupling, the photoconductivities can be tuned. Furthermore, the effect of warping term on geometric tensor and the amplitude of the photoconductivities are also discussed.
Keywords:  photoconductivity      transition metal dichalcogenide      warping term  
Received:  23 August 2020      Revised:  03 October 2020      Accepted manuscript online:  28 October 2020
PACS:  73.43.-f (Quantum Hall effects)  
  78.20.-e (Optical properties of bulk materials and thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504095) and the Science and Technology Program for Institutions of Higher Learning in Shandong Province, China (Grant No. J18KA224).
Corresponding Authors:  Corresponding author. E-mail: yangyhm@163.com Corresponding author. E-mail: wlxzyh@163.com   

Cite this article: 

Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏, and Yun-Hai Zhang(张运海) Nonlinear photoncurrent in transition metal dichalcogenide with warping term under illuminating of light 2021 Chin. Phys. B 30 037301

1 Korm\'anyos A, Z\'olyomi V, Drummond N D, Rakyta P, Burkard G and Fal'ko V I 2008 Phys. Rev. B 88 045416
2 Liu G B, Shan W Y, Yao Y, Yao W and Xiao D 2008 Phys. Rev. B 88 085433
3 Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
4 Ili\'c S, Meyer J S and Houzet M 2019 Phys. Rev. B 99 205407
5 Li Z and Carbotte J P 2012 Phys. Rev. B 86 205425
6 Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887
7 Tahir M, Manchon A and Schwingenschl\"ogl U 2014 Phys. Rev. B 90 125438
8 Sengupta P and Bellotti E 2016 Appl. Phys. Lett. 108 211104
9 Berkelbach T C, Hybertsen M S and Reichman D R 2015 Phys. Rev. B 92 085413
10 Rukelj Z, \vStrkalj A and Despoja V 2016 Phys. Rev. B 94 115428
11 Conte S D, Bottegoni F, Pogna E A A, De Fazio D, Ambrogio S, Bargigia I, D, Andrea C, Lombardo A, Bruna M, Ciccacci F, Ferrari A C, Cerullo G and Finazzi M 2015 Phys. Rev. B 92 235425
12 Su X, Jiang L, Wang F, Su G, Qu L and Lu Y 2017 Appl. Phys. A 123 1
13 Motlagh S A O, Wu J S, Apalkov V and Stockman M I 2018 Phys. Rev. B 98 081406
14 Lee H C 2017 Phys. Rev. B 95 245102
15 Enaldiev V V 2017 Phys. Rev. B 96 235429
16 Sipe J E and Shkrebtii A I 2000 Phys. Rev. B 61 5337
17 Young S M and Rappe A M 2012 Phys. Rev. Lett. 109 116601
18 Young S M, Zheng F and Rappe A M 2012 Phys. Rev. Lett. 109 236601
19 Cook A M, Fregoso B M, Juan F d, Coh S and Moore J E 2017 Nat. Comm. 8 14176
20 McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P and Gedik N 2012 Nat. Nanotechnol. 7 96
21 Yuan H, Wang X, Lian B, Zhang H, Fang X, Shen B, Xu G, Xu Y, Zhang S Cheng, Hwang H Y and Cui Y 2014 Nat. Nanotechnol. 9 851
22 Dhara S, Mele E J and Agarwal R 2015 Science 349 726
23 de Juan F, Grushin A G, Morimoto T and Moore J E 2017 Nat. Commun. 8 1
24 Morimoto T, Nakamura M, Kawasaki M and Nagaosa N 2018 Phys. Rev. Lett. 121 267401
25 Ji Z, Liu G, Addison Z, Liu W, Yu P, Gao H, Liu Z, Rappe A M, Kane C L, Mele E J and Agarwal R 2019 Nat. Mater. 18 955
26 Wang H and Qian X 2019 Sci. Adv. 5 9743
27 Sotome M, Nakamura M, Fujioka J, Ogino M, Kaneko Y, Morimoto T, Zhang Y, Kawasaki M, Nagaosa N, Tokura Y and Ogawa N 2019 Proc. Natl. Acad. Sci. USA 116 1929
28 Semenov Y G, Li X and Kim K W 2012 Phys. Rev. B 86 201401
29 Ogawa N, Yoshimi R, Yasuda K, Tsukazaki A, Kawasaki M and Tokura Y 2016 Nat. Commun. 7 12246
30 Chan C K, Lindner N H, Refael G and Lee P A 2017 Phys. Rev. B 95 041104
31 Ma J, Gu Q, Liu Y, Lai J, Yu P, Zhuo X, Liu Z, Chen J H, Feng J and Sun D 2019 Nat. Mater. 18 476
32 Zhang Y J, Ideue T, Onga M, Qin F, Suzuki R, A Zak, Tenne R, Smet J H and Iwasa Y 2019 Nature 570 349
33 Yang M M, Kim D J and Alexe M 2018 Science 360 904
34 Yuan H, Wang X, Lian B, Zhang H, Fang X, Shen B, Xu G, Xu Y, Zhang S C, Hwang H Y and Cui Y 2014 Nat. Nanotech. 9 856
35 Dhara S, Mele E J and Agarwal R 2015 Science 349 726
36 Ji Z, Liu G, Addison Z, Liu W, Yu P, Gao H, Liu Z, Rappe A M, Kane C L, Mele E J and Agarwa R 2019 Nat. Mater. 18 955
37 Osterhoudt G B, Diebel L K, Gray M J, Yang X, Stanco J, Huang X, Shen B, Ni N, Moll P J W, Ran Y and Burch K S 2019 Nat. Mater. 18 471
38 Nakamura M, Horiuchi S, Kagawa F, Ogawa N, Kurumaji T, Tokura Y and Kawasaki M 2017 Nat. Commun. 8 281
39 Rakyta P, Korm\'anyos A and Cserti J 2010 Phys. Rev. B 82 113405
40 Ma D S, Yu Z M, Pan H and Yao Y 2018 Phys. Rev. B 97 085416
41 Battilomo R, Scopigno N and Ortix C 2019 Phys. Rev. Lett. 123 196403
42 Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204
43 Chen W, Zhou X, Liu P, Xiao X and Zhou G 2020 Phys. Lett. A 384 126344
44 Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806
45 Bleu O, Solnyshkov D D and Malpuech G 2018 Phys. Rev. B 97 195422
[1] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[2] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[3] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[4] Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance
Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军). Chin. Phys. B, 2022, 31(11): 117304.
[5] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[6] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[7] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[8] Quantization of the band at the surface of charge density wave material 2H-TaSe2
Man Li(李满), Nan Xu(徐楠), Jianfeng Zhang(张建丰), Rui Lou(娄睿), Ming Shi(史明), Lijun Li(黎丽君), Hechang Lei(雷和畅), Cedomir Petrovic, Zhonghao Liu(刘中灏), Kai Liu(刘凯), Yaobo Huang(黄耀波), and Shancai Wang(王善才). Chin. Phys. B, 2021, 30(4): 047305.
[9] Negative photoconductivity in low-dimensional materials
Boyao Cui(崔博垚), Yanhui Xing(邢艳辉), Jun Han(韩军), Weiming Lv(吕伟明), Wenxing Lv(吕文星), Ting Lei(雷挺), Yao Zhang(张尧), Haixin Ma(马海鑫), Zhongming Zeng(曾中明), and Baoshun Zhang(张宝顺). Chin. Phys. B, 2021, 30(2): 028507.
[10] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[11] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
Zhe Wang(王喆) and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(11): 116401.
[12] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[13] Magnetic field enhanced single particle tunneling in MoS2-superconductor vertical Josephson junction
Wen-Zheng Xu(徐文正), Lai-Xiang Qin(秦来香), Xing-Guo Ye(叶兴国), Fang Lin(林芳), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2020, 29(5): 057502.
[14] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[15] A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors
Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生). Chin. Phys. B, 2020, 29(11): 118101.
No Suggested Reading articles found!