CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure |
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢) |
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Synergetic Innovation Center for Quantum Effects and Applications(SICQEA), Hunan Normal University, Changsha 410081, China |
|
|
Abstract Understanding the physical mechanism of structural stability and transition in various polytypes of layered transition metal dichalcogenides under the external stimulus is of crucial importance for their new applications. Here, we investigate the thickness-dependent structural properties of MoS2 under the condition of hydrostatic pressure in terms of bond relaxation and thermodynamics considerations. For both types of MoS2 structures, we find that the transition and metallization are significantly modulated by hydrostatic pressure and the number of layers. We establish a pressure-size phase diagram to address the transition mechanism. Our study not only provides insights into the thickness-dependent structural properties of MoS2, but also shows a theoretical guidance for the design and fabrication of MoS2-based devices.
|
Received: 03 February 2020
Revised: 19 April 2020
Accepted manuscript online:
|
PACS:
|
64.70.Nd
|
(Structural transitions in nanoscale materials)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
64.10.+h
|
(General theory of equations of state and phase equilibria)
|
|
64.60.an
|
(Finite-size systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91833302). |
Corresponding Authors:
Gang Ouyang
E-mail: gangouy@hunnu.edu.cn
|
Cite this article:
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢) Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure 2020 Chin. Phys. B 29 086403
|
[1] |
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
|
[2] |
Tan C L and Zhang H 2015 Chem. Soc. Rev. 44 2713
|
[3] |
Radisavljevic B, Radenovic A, Brivio J and Kis A 2011 Nat. Nanotechnol. 6 147
|
[4] |
Maeso D, Gomez A C, Agraït N and Bollinger G R 2019 Adv. Electron. Mater. 5 1900141
|
[5] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Stranoet M S 2012 Nat. Nanotechnol. 7 699
|
[6] |
Roldan R, Castellanos-Gomez A, Cappelluti E and Guinea F 2015 J. Phys.:Condens. Matter. 27 313201
|
[7] |
Shahraki M A, Pourfath M, Member S and Esseni D 2019 IEEE T. Electron. Dev. 66 1997
|
[8] |
Chen Y F, Xi J Y, Dumcenco D O, Liu Z, Suenaga K, Wang D, Shuai Z G, Huang Y S and Xie L M 2013 ACS Nano 7 4610
|
[9] |
Liu K H, Zhang L M, Cao T, Jin C H, Qiu D N, Zhou Q, Zettl A, Yang P D, Louie S G and Wang F 2014 Nat. Commun. 5 4966
|
[10] |
Huang Y P, Huang X L, Wang X, Zhang W T, Zhou D, Zhou Q, Liu B B and Cui T 2019 Chin. Phys. B 28 096402
|
[11] |
Wang W D, Li L L, Yang C C, Soler-Crespo R A, Meng Z X, Li M L, Zhang X, Keten S and Espinosa H D 2017 Nanotechnology 28 164005
|
[12] |
Ma X, Li Z Hui, Jing X L, Gu H K, Tian H, Dong Q, Wang P, Liu R, Liu B and Li Q J 2019 Chin. Phys. B 28 066402
|
[13] |
Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C Q, Singh A K, Akinwande D and Lin J F 2014 Nat. Commun. 5 4731
|
[14] |
Chi Z H, Zhao X M, Zhang H, Goncharov A F, Lobanov S S, Kagayama T, Sakata M and Chen X J 2014 Phys. Rev. Lett. 113 036802
|
[15] |
Aksoy R, Ma Y, Selvi E, Chyu M C, Ertas A and White A 2006 J. Phys. Chem. Solid 67 1914
|
[16] |
Bandaru N, Kumar R S, Sneed D, Tschauner O, Baker J, Antonio D, Luo S N, Hartman T, Zhao Y S and Venkat R 2014 J. Phys. Chem. C 118 3230
|
[17] |
Jiang J J, Li H P, Dai L D, Hu H Y and Zhao C S 2016 AIP Adv. 6 035214
|
[18] |
Zhuang Y K, Dai L D, Wu L, Li H P, Hu H Y, Liu K X, Yang L F and Pu C 2017 Appl. Phys. Lett. 110 122103
|
[19] |
Cheng X, Li Y, Shang J, Hu C S, Ren Y F, Liu M and Qi Z M 2018 Nano Res. 11 855
|
[20] |
Hromadova L, Martoňák R and Tosatti E 2013 Phys. Rev. B 87 144105
|
[21] |
Fan X F, Chang C H, Zheng W T, Kuo J L and Singh D J 2015 J. Phys. Chem. C 119 10189
|
[22] |
Fan X, Singh D J, Jiang Q and Zheng W T 2016 Phys. Chem. Chem. Phys. 18 12080
|
[23] |
Chi Z, Chen X, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C L, Chu S Q, Li Y C, Zhao J G, Kagayama T, Ma Y M and Yang Z R 2018 Phys. Rev. Lett. 120 037002
|
[24] |
Zhao Z, Zhang H, Yuan H, Wang S B, Lin Y, Zeng Q S, Xu G, Liu Z X, Solanki G K, Patel K D, Cui Y, Hwang H Y and Mao W L 2015 Nat. Commun. 6 7312
|
[25] |
Kohulák O and Martoňák R 2017 Phys. Rev. B 95 054105
|
[26] |
Rifliková M, Martoňák R and Tosatti E 2014 Phys. Rev. B 90 035108
|
[27] |
Duwal S and Yoo C S 2016 J. Phys. Chem. C 120 5101
|
[28] |
Nayak A P, Pandey T, Voiry D, Liu J, Moran S T, Sharma A, Tan C, Chen C H, Li L J, Chhowalla M, Lin J F, Singh A K and Akinwande D 2014 Nano Lett. 15 346
|
[29] |
Kim J S, Ahmad R, Pandey T, Rai A, Feng S M, Yang J, Lin Z, Terrones M, Banerjee S K, Singh A K, Akinwande D and Lin J F 2017 2D Mater. 5 015008
|
[30] |
Ghorbani-Asl M, Borini S, Kuc A and Heine T 2013 Phys. Rev. B 87 235434
|
[31] |
He J, Hummer K and Franchini C 2014 Phys. Rev. B 89 075409
|
[32] |
Liang T, Phillpot S R and Sinnott S B 2009 Phys. Rev. B 79 245110
|
[33] |
Li T 2012 Phys. Rev. B 85 235407
|
[34] |
Cooper R C, Lee C, Marianetti C A, Wei X D, Hone J and Kysar J W 2013 Phys. Rev. B 87 035423
|
[35] |
Zhao Y, Liao C and Ouyang G 2018 J. Phys. D:Appl. Phys. 51 185101
|
[36] |
Aitken Z H and Huang R 2010 J. Appl. Phys. 107 123531
|
[37] |
Sun C Q, Li C M, Bai H L and Jiang E Y 2005 Nanotechnology 16 1290
|
[38] |
Chen Z, Sun C Q, Zhou Y and Ouyang G 2008 J. Phys. Chem. C 112 2423
|
[39] |
Zhang A, Luo S, Ouyang G and Yang G W 2013 J. Chem. Phys. 138 244702
|
[40] |
Sun C Q 2007 Prog. Solid State Chem. 35 1
|
[41] |
Ouyang G, Wang C X and Yang G W 2009 Chem. Rev. 109 4221
|
[42] |
Zhang A, Zhu Z M, He Y and Ouyang G 2012 Appl. Phys. Lett. 100 171912
|
[43] |
Xiong S and Cao G X 2015 Nanotechnology 26 185705
|
[44] |
Varshney V, Patnaik S S, Muratore C, Roy A K, Voevodin A A and Farmer B L 2010 Comput. Mater. Sci. 48 101
|
[45] |
Guo H, Yang T, Tao P, Wang Y and Zhang Z D 2013 J. Appl. Phys. 113 013709
|
[46] |
Chu S, Park C and Shen G 2016 Phys. Rev. B 94 020101
|
[47] |
Birch F 1947 Phys. Rev. 71 809
|
[48] |
Ouyang G, Sun C Q and Zhu W G 2008 J. Phys. Chem. B 112 5027
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|