Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 037302    DOI: 10.1088/1674-1056/abc54d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments

Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发)†
1 Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
Abstract  The uncertainty principle is a crucial aspect of quantum mechanics. It has been shown that the uncertainty principle can be tightened by quantum discord and classical correlation in the presence of quantum memory. We investigate the control of the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environment. Our results show that the entropic uncertainty of an observed system can be reduced and the quantum discord between the observed system and the quantum memory system can be enhanced in the steady state of the system by adding an dissipative ancilla. Particularly, via preparing the state of the system to the highest excited state with hight fidelity, the entropic uncertainty can be reduced markedly and the quantum discord can be enhanced obviously. We explain these results using the definition of state fidelity. Furthermore, we present an effective strategy to further reduce the the entropic uncertainty and to enhance the the quantum discord via quantum-jump-based feedback control. Therefore, our results may be of importance in the context of quantum information technologies.
Keywords:  entropic uncertainty      quantum discord      dissipative environment      ancilla  
Received:  03 September 2020      Revised:  08 October 2020      Accepted manuscript online:  28 October 2020
PACS:  73.63.Nm (Quantum wires)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064012 and 11374096).
Corresponding Authors:  Corresponding author. E-mail: mffang@hunnu.edu.cn   

Cite this article: 

Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发) Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments 2021 Chin. Phys. B 30 037302

1 Heisenberg W 1927 Z. Phys. 43 172
2 Kennard E H 1927 Z. Phys. 44 326
3 Robertson H P 1929 Phys. Rev. 34 163
4 Maccine L and Pati A K 2014 Phys. Rev. Lett. 113 260401
5 Wang K K, Zhan X, Bian Z H, Li J, Zhang Y S and Xue P 2016 Phys. Rev. A 93 052108
6 Deutsch D 1987 Phys. Rev. Lett. 50 631
7 Kraus K 1987 Phys. Rev. D 35 3070
8 Maassen H and Uffink J 1988 Phys. Rev. Lett. 60 1103
9 Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
10 Renes J and Boileau J 2009 Phys. Rev. Lett. 103 020402
11 Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7 757
12 Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752
13 Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
14 Henderson L and Vedral V 2001 J. Phys. A 34 6899
15 Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
16 Wang, B, Xu Z Y, Chen Z A and Feng M 2010 Phys. Rev. A 81 014101
17 Streltsov A, Kampermann H and Bruss D 2011 Phys. Rev. Lett. 106 160401
18 Ciccarello F and Giovannetti V 2012 Phys. Rev. A 85 010102
19 Zhang S Y, Fang M F and Yu M 2016 Int. J. Theor. Phys. 55 1824
20 Steane A M 1996 Phys. Rev. Lett. 77 793
21 Francica F, Plastina F and Maniscalco S 2010 Phys. Rev. A 82 052118
22 Hu M L, Hu X Y, Wang J C, Peng Y, Zhang Y R and Fan H Phys. Rep. 762-764 1
23 Pati A K, Wilde M M, Rajagopal A K and Sudha 2012 Phys. Rev. A 86 042105
24 Hu M L and Fan H 2012 Phys. Rev. A 86 032338
25 Hu M L and Fan H 2013 Phys. Rev. A 87 022314
26 Hu M L and Fan H 2013 Phys. Rev. A 88 014105
27 Zhang J, Liu Y X, Li C W, Tarn T J and Nori F 2009 Phys. Rev. A 79 052308
28 Sauer S, Gneiting C and Buchleitner A 2014 Phys. Rev. A 89 022327
29 Vedral V 2002 Rev. Mod. Phys. 74 197
30 Groisman B, Popescu S and Winter A 2005 Phys. Rev. A 72 032317
31 Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
32 Schumacher B and Westmoreland M D 2006 Phys. Rev. A 74 042305
33 Groisman B, Popescu S and Winter A 2005 Phys. Rev. A 72 032317
34 Rulli C C and Sarandy M S 2011 Phys. Rev. A 84 042109
35 Mahdian M, Yousefjani R and Salimi S 2012 Eur. Phys. J. D 66 133
36 Wiseman H M and Milburn G J 2006 Phys. Rev. Lett. 70 548
37 Wiseman H M 1994 Phys. Rev. A 49 2133
38 Hou S C, Huang X L and Yi X X 2010 Phys. Rev. A 82 012336
39 Dewes A, Ong F R, Schmitt V, Lauro R, Boulant N, Bertet P, Vion D and Esteve D 2012 Phys. Rev. Lett. 108 057002
40 Houck A A, Koch J, Devoret M H, Girvin S M and Schoelkopf R J 2009 Quantum Infor. Proc. 8 105
41 Ma S L, Li X K, Liu X Y, Xie J K and Li F L 2019 Phys. Rev. A 99 042336
42 Bouchiat V, Vion D, Joyez P, Esteve D and Devoret M H 1998 Phys. Scr. T 76 165
43 Nakamura Y, Pashkin Y A and Tsai J S 1999 Nauture 398 786
[1] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[2] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[3] Dynamics of entropic uncertainty for three types of three-level atomic systems under the random telegraph noise
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(5): 057305.
[4] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[5] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
[6] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[7] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[8] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
[9] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[10] Geometric global quantum discord of two-qubit states
Yunlong Xiao(肖运龙), Tao Li(李陶), Shao-Ming Fei(费少明), Naihuan Jing(景乃桓), Zhi-Xi Wang(王志玺), Xianqing Li-Jost(李先清). Chin. Phys. B, 2016, 25(3): 030301.
[11] Phase effect on dynamics of quantum discord modulated by interaction between qubits
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(9): 090303.
[12] Reduction of entropic uncertainty in entangled qubits system by local JJ-symmetric operation
Zhang Shi-Yang (张诗阳), Fang Mao-Fa (方卯发), Zhang Yan-Liang (张延亮), Guo You-Neng (郭有能), Zhao Yan-Jun (赵艳君), Tang Wu-Wei (唐武伟). Chin. Phys. B, 2015, 24(9): 090304.
[13] Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence
Yang Guo-Hui (杨国晖), Zhang Bing-Bing (张冰冰), Li Lei (李磊). Chin. Phys. B, 2015, 24(6): 060302.
[14] Dynamics of super-quantum discord and direct control with weak measurement in open quantum system
Ji Ying-Hua (嵇英华). Chin. Phys. B, 2015, 24(12): 120302.
[15] Characterizing the dynamics of quantum discord under phase damping with POVM measurements
Jiang Feng-Jian (蒋峰建), Ye Jian-Feng (叶剑锋), Yan Xin-Hu (闫新虎), Lü Hai-Jiang (吕海江). Chin. Phys. B, 2015, 24(10): 100304.
No Suggested Reading articles found!