Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 058504    DOI: 10.1088/1674-1056/ab8891
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO

Chao-Jun Wang(王朝骏)1,2, Xun Yang(杨珣)1,2, Jin-Hao Zang(臧金浩)1,2, Yan-Cheng Chen(陈彦成)1,2, Chao-Nan Lin(林超男)1,2, Zhong-Xia Liu(刘忠侠)2, Chong-Xin Shan(单崇新)1,2
1 Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China;
2 Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Abstract  It is essential to determine the accumulative ultraviolet (UV) irradiation over a period of time in some cases, such as monitoring UV irradiation to the skin, solar disinfection of water, photoresist exposure, etc. UV colorimetric dosimeters, which use dyes' color change to monitor the amount of UV exposure, have been widely studied. However, the exposure data of these UV colorimetric dosimeters can hardly be converted to digital signals, limiting their applications. In this paper, a UV dosimeter has been proposed and demonstrated based on the persistent photoconductivity (PPC) in zinc oxide microwires (ZnO MWs). The PPC effect usually results in high photoconductivity gain but low response speed, which has been regarded as a disadvantage for photodetectors. However, in this work, the unique characteristics of the PPC effect have been utilized to monitoring the accumulative exposure. We demonstrate that the photocurrent in the ZnO MWs depends on the accumulative UV exposure due to the PPC effect, thus the photocurrent can be utilized to determine the UV accumulation. The dosimeter is immune to visible light and exhibits a photoconductive gain of 2654, and the relative error of the dosimeter is about 10%. This UV dosimeter with electrical output is reusable and convenient to integrate with other electronic devices and may also open a new application area for the PPC effect.
Keywords:  dosimetry      persistent photoconductivity      photodetectors      ultraviolet  
Received:  20 February 2020      Revised:  29 March 2020      Accepted manuscript online: 
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  42.79.Pw (Imaging detectors and sensors)  
  61.72.uj (III-V and II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61804136, U1604263, and U1804155) and China Postdoctoral Science Foundation (Grant Nos. 2018M630829 and 2019T120630).
Corresponding Authors:  Xun Yang, Chong-Xin Shan     E-mail:  yangxun9013@163.com;cxshan@zzu.edu.cn

Cite this article: 

Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新) Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO 2020 Chin. Phys. B 29 058504

[1] Araki H, Kim J, Zhang S, Banks A, Crawford K E, Sheng X, Gutruf P, Shi Y, Pielak R M and Rogers J A 2017 Adv. Funct. Mater. 27 1604465
[2] Humble M B 2010 J. Photochem. Photobiol. B 101 142
[3] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z and Shan C X 2019 J. Mater. Chem. C 7 2557
[4] Mills A, McFarlane M and Schneider S 2006 Anal. Bioanal. Chem. 386 299
[5] Kim J, Salvatore G A, Araki H, Chiarelli A M, Xie Z, Banks A, Sheng X, Liu Y, Lee J W, Jang K I, Heo S Y, Cho K, Luo H, Zimmerman B, Kim J, Yan L, Feng X, Xu S, Fabiani M, Gratton G, Huang Y, Paik U and Rogers J A 2016 Sci. Adv. 2 e1600418
[6] Shan C X, Liu J S, Lu Y J, Li B H, Ling F C C and Shen D Z 2015 Opt. Lett. 40 3041
[7] Li Y, Shi Z F, Lei L Z, Ma Z Z, Zhang F, Li S, Wu D, Xu T T, Li X J, Shan C X and Du G T 2018 ACS Photon. 5 2524
[8] Yang X, Shan C X, Lu Y J, Xie X H, Li B H, Wang S P, Jiang M M and Shen D Z 2016 Opt. Lett. 41 685
[9] Liu Y, Jiang M M, Zhang Z, Li B H, Zhao H, Shan C X and Shen D Z 2018 Nanoscale 10 5678
[10] Kim T, Park S, Kang H K, Jeong K, Bae J, Song J and Cho M H 2018 Appl. Surf. Sci. 458 964
[11] Liu S, Liao Q L, Zhang Z, Zhang X K, Lu S N, Zhou L X, Hong M Y, Kang Z and Zhang Y 2017 Nano Res. 10 3476
[12] Liu K W, Sakurai M, Aono M and Shen D Z 2015 Adv. Funct. Mater. 25 3157
[13] Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H and Wang D 2007 Nano Lett. 7 1003
[14] Tian Y, Guo C F, Zhang J and Liu Q 2015 Phys. Chem. Chem. Phys. 17 851
[15] Biswas C, Güneş F, Loc D D, Lim S C, Jeong M S, Pribat D and Lee Y H 2011 Nano Lett. 11 4682
[16] Lu L Z, Jiang X T, Peng H Q, Zeng D and Xie C S 2018 RSC Adv. 8 16455
[17] Du J L, Liao Q L, Hong M Y, Liu B S, Zhang X K, Yu H H, Xiao J K, Gao L, Gao F F, Kang Z, Zhang Z and Zhang Y 2019 Nano Energy 58 85
[18] Zhou C Q, Ai Q, Chen X, Gao X H, Liu K Y and Shen D Z 2019 Chin. Phys. B 28 048503
[19] Liu K K, Li X M, Cheng S B, Zhou R, Liang Y C, Dong L, Shan C X, Zeng H B and Shen D Z 2018 Nanoscale 10 7155
[20] Lu Y J, Shi Z F, Shan C X and Shen D Z 2017 Chin. Phys. B 26 047703
[21] Lin P, Yan X Q, Zhang Z, Shen Y W, Zhao Y G, Bai Z M and Zhang Y 2013 ACS Appl. Mater. Inter. 5 3671
[22] Yang X, Shan C X, Liu Q, Jiang M M, Lu Y J, Xie X H, Li B H and Shen D Z 2018 ACS Photon. 5 1006
[23] Bao R R, Wang C F, Peng Z C, Ma C, Dong L and Pan C F 2017 ACS Photon. 4 1344
[24] Zhang Z, Kang Z, Liao Q L, Zhang X M and Zhang Y 2017 Chin. Phys. B 26 118102
[25] Shi Z F, Sun X G, Wu D, Xu T T, Zhuang S W, Tian Y T, Li X and Du G T 2016 Nanoscale 8 10035
[26] Ni P N, Shan C X, Wang S P, Lu Y J, Li B H and Shen D Z 2015 Appl. Phys. Lett. 107 231108
[27] Zang S P, Wang Y L, Li M Y, Su W, An M Q, Zhang X T and Liu Y C 2018 Chin. Phys. B 27 018503
[28] Liu Z Y, Shen C L, Lou Q, Zhao W B, Wei J Y, Liu K K, Zang J H, Dong L and Shan C X 2020 J. Lumin. 221 117111
[29] Madel M, Huber F, Mueller R, Amann B, Dickel M, Xie Y and Thonke K 2017 J. Appl. Phys. 121 124301
[30] Gao T, Ji Y and Yang Y 2019 Adv. Electron. Mater. 5 1900776
[31] Rana A K, Kumar M, Ban D, Wong C, Yi J and Kim J 2019 Adv. Electron. Mater. 5 1900438
[32] Li H X, Zhang X H, Liu N S, Ding L W, Tao J Y, Wang S L, Su J, Li L Y and Gao Y H 2015 Opt. Express 23 21204
[33] Chen A Q, Zhu H, Wu Y Y, Lou G L, Liang Y F, Li J Y, Chen Z Y, Ren Y H, Gui X C, Wang S P and Tang Z K 2017 ACS Photon. 4 1286
[34] Zhang Q, Qi J J, Li X, Yi F, Wang Z Z and Zhang Y 2012 Appl. Phys. Lett. 101 043119
[35] Yang X, Shan C X, Ni P N, Jiang M M, Chen A Q, Zhu H, Zang J H, Lu Y J and Shen D Z 2018 Nanoscale 10 9602
[36] Shi Z F, Xu T T, Wu D, Zhang Y T, Zhang B L, Tian Y T, Li X and Du G T 2016 Nanoscale 8 9997
[37] Chen A Q, Zhu H, Wu Y Y, Chen M M, Zhu Y, Gui X C and Tang Z K 2016 Adv. Funct. Mater. 26 3696
[38] Hullavarad S, Hullavarad N, Look D and Claflin B 2009 Nanoscale Res. Lett. 4 1421
[39] Laiho R, Poloskin D S, Stepanov Y P, Vlasenko M P, Vlasenko L S and Zakhvalinskii V S 2009 J. Appl. Phys. 106 013712
[40] Liu P, She G W, Liao Z L, Wang Y, Wang Z Z, Shi W S, Zhang X H, Lee S T and Chen D M 2009 Appl. Phys. Lett. 94 063120
[41] Katz O, Garber V, Meyler B, Bahir G and Salzman J 2001 Appl. Phys. Lett. 79 1417
[42] Reparaz J S, Guell F, Wagner M R, Hoffmann A, Cornet A and Morante J R 2011 in 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (IEEE, Munich, Germany), p. 1
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[5] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[6] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[7] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[8] Yield enhancement of elliptical high harmonics driven by bicircular laser pulses
Xiaofan Zhang(张晓凡) and Xiaosong Zhu(祝晓松). Chin. Phys. B, 2022, 31(11): 114209.
[9] Micro-pinch formation and extreme ultraviolet emission of laser-induced discharge plasma
Jun-Wu Wang(王均武), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗), and Vassily S. Zakharov. Chin. Phys. B, 2021, 30(9): 095207.
[10] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[11] Response of HD-V2 radiochromic film to argon ions
Lei Cheng(程蕾), Zhe Zhang(张喆), Guiyun Liang(梁贵云), and Yutong Li(李玉同). Chin. Phys. B, 2021, 30(8): 080702.
[12] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[13] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[14] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
[15] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
No Suggested Reading articles found!