Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047305    DOI: 10.1088/1674-1056/abe9a8
RAPID COMMUNICATION Prev   Next  

Quantization of the band at the surface of charge density wave material 2H-TaSe2

Man Li(李满)1,2,†, Nan Xu(徐楠)3,†, Jianfeng Zhang(张建丰)1,†, Rui Lou(娄睿)1, Ming Shi(史明)4, Lijun Li(黎丽君)5, Hechang Lei(雷和畅)1, Cedomir Petrovic6, Zhonghao Liu(刘中灏)7, Kai Liu(刘凯)1, Yaobo Huang(黄耀波)2,‡, and Shancai Wang(王善才)1,§
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China;
3 Institute of Advanced Studies, Wuhan University, Wuhan 430072, China;
4 Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland;
5 Chongqing Technology and Busineee University, Chongqing 400067, China;
6 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA;
7 State Key Laboratory of Functional Materials for Informatics and Center for Excellence in Superconducting Electronics, SIMIT, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  By using angle-resolved photoemission spectroscopy (ARPES) combined with the first-principles electronic structure calculations, we report the quantized states at the surface of a single crystal 2H-TaSe2. We have observed sub-bands of quantized states at the three-dimensional Brillouin zone center due to a highly dispersive band with light effective mass along kz direction. The quantized sub-bands shift upward towards EF while the bulk band at $\varGamma$ shifts downward with the decrease of temperature across charge density wave (CDW) formation. The band shifts could be intimately related to the CDW. While neither the two-dimensional Fermi-surface nesting nor purely strong electron-phonon coupling can explain the mechanism of CDW in 2H-TaSe2, our experiment may ignite the interest in understanding the CDW mechanism in this family.
Keywords:  angle-resolved photoemission spectroscopy      transition metal dichalcogenide      TaSe2  
Received:  13 January 2021      Revised:  08 February 2021      Accepted manuscript online:  25 February 2021
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  79.60.-i (Photoemission and photoelectron spectra)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774421, 11774424, 11574394, 11774423, 11822412, and 11874047), the National Key R&D Program of China (Grant Nos. 2016YFA0401002, 2018YFA0307000, 2016YFA0300504, and 2018FYA0305800), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2042018kf-0030).
Corresponding Authors:  These authors contributed equally. Corresponding author. E-mail: huangyaobo@zjlab.org.cn §Corresponding author. E-mail: scw@ruc.edu.cn   

Cite this article: 

Man Li(李满), Nan Xu(徐楠), Jianfeng Zhang(张建丰), Rui Lou(娄睿), Ming Shi(史明), Lijun Li(黎丽君), Hechang Lei(雷和畅), Cedomir Petrovic, Zhonghao Liu(刘中灏), Kai Liu(刘凯), Yaobo Huang(黄耀波), and Shancai Wang(王善才) Quantization of the band at the surface of charge density wave material 2H-TaSe2 2021 Chin. Phys. B 30 047305

1 Santander-Syro A F, Copie O, Kondo T, Fortuna F, Pailhes S, Weht R, Qiu X G, Bertran F, Nicolaou A, Taleb-Ibrahimi A, Le Fevre P, Herranz G, Bibes M, Reyren N, Apertet Y, Lecoeur P, Barthlmy A and Rozenberg M J 2011 Nature 469 189
2 Meevasana W, King P D C, He R H, Mo S K, Hashimoto M, Tamai A, Songsiriritthigul P, Baumberger F and Shen Z X 2011 Nat. Mater. 10 114
3 Plumb N C, Salluzzo M, Razzoli E, Mnsson M, Falub M, Krempasky J, Matt C E, Chang J, Schulte M, Braun J, Ebert H, Minr J, Delley B, Zhou K J, Schmitt T, Shi M, Mesot J, Patthey L and Radovi M 2014 Phys. Rev. Lett. 113 086801
4 Wang Z, McKeownWalker S, Tamai A, Wang Y, Ristic Z, Bruno F Y, de la Torre A, Ricc S, Plumb N C, Shi M, Hlawenka P, Snchez-Barriga J, Varykhalov A, Kim T K, Hoesch M, King P D C, Meevasana W, Diebold U, Mesot J, Moritz B, Devereaux T P, Radovic M and Baumberger F 2016 Nat. Mater. 15 835
5 Abe S, Inaoka T and Hasegawa M 2002 Phys. Rev. B 66 205309
6 King P D C, Veal T D and McConville C F 2008 Phys. Rev. B 77 125305
7 King P D C, Veal T D, McConville CF, Ziga-Prez J, Muoz-Sanjos V, Hopkinson M, Rienks E D L, Fuglsang Jensen M and Hofmann Ph 2010 Phys. Rev. Lett. 104 256803
8 Hirahara T, Nagao T, Matsuda I, Bihlmayer G, Chulkov E V, Koroteev Y M and Hasegawa S 2007 Phys. Rev. B 75 035422
9 Matsuda I, Ohta T and Yeom H W 2002 Phys. Rev. B 65 085327
10 Nagamura N, Matsuda I, Miyata N, Hirahara T, Hasegawa S and Uchihashi T 2006 Phys. Rev. Lett. 96 256801
11 Ohtomo A and Hwang H Y 2004 Nature 427 423
12 Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science 313 1942
13 Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
14 Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
15 Reyren N, Thiel S, Caviglia AD, Kourkoutis LF, Hammerl G, Richter C, Schneider CW, Kopp T, Retschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
16 Brinkman A, Huijben M, van Zalk M, Huijben J, Zeitler U, Maan J C, van der Wiel W G, Rijnders G, Blank D H A and Hilgenkamp H 2007 Nat. Mater 6 493
17 Zhang Z and Yates J T 2012 Chem. Rev. 112 5520
18 Roch J G, Froehlicher G, Leisgang N, Makk P, Watanabe K, Taniguchi T and Warburton R J 2019 Nat. Nanotechnol. 14 432
19 Shen D W, Xie B P, Zhao J F, Yang L X, Fang L, Shi J, He R H, Lu D H, Wen H H and Feng D L 2007 Phys. Rev. Lett. 99 216404
20 Borisenko S V, Kordyuk A A, Yaresko A N, Zabolotnyy V B, Inosov D S, Schuster R, Bchner B, Weber R, Follath R, Patthey L and Berger H 2008 Phys. Rev. Lett. 100 196402
21 Li Y W, Jiang J, Yang H F, Prabhakaran D, Liu Z K, Yang L X and Chen Y L 2018 Phys. Rev. B 97 115118
22 Rice T M and Scott G K 1975 Phys. Rev. Lett. 35 120
23 Liu R, Olson C G, Tonjes W C and Frindt R F 1998 Phys. Rev. Lett. 80 5762
24 Liu R, Tonjes W C, Greanya V A, Olson C G and Frindt R F 2000 Phys. Rev. B 61 5212
25 Whangbo M H and Canadell E 1992 J. Am. Chem. Soc. 114 9587
26 McMillan W L 1977 Phys. Rev. B 16 643
27 van Wezel J, Nahai-Williamson P and Saxena S S 2010 Phys. Rev. B 81 165109
28 van Wezel J, Nahai-Williamson P and Saxena S S 2010 Europhys. Lett. 89 47004
29 Cercellier H, Monney C, Clerc F, Battaglia C, Despont L, Garnier M G, Beck H, Aebi P, Patthey L, Berger H and Forr L 2007 Phys. Rev. Lett. 99 146403
30 Gorkov L P 2012 Phys. Rev. B 85 165142
31 Dai J X, Calleja E, Alldredge J, Zhu X D, Li L J, Lu W J, Sun Y P, Wolf T, Berger H and McElroy K 2014 Phys. Rev. B 89 165140
32 Johannes M D and Mazin I I 2008 Phys. Rev. B 77 165135
33 Li L J, Deng X, Wang Z, Liu Y, Abeykoon M, Dooryhee E, Tomic A, Huang Y N, Warren J B, Bozin E S, Billinge S J L, Sun Y P, Zhu Y M, Kotliar G and Petrovic C 2017 npj Quantum Materials 2 11
34 Qiao S, Li X, Wang N, Ruan W, Ye C, Cai P, Hao Z Q, Yao H, Chen X H, Wu J, Wang Y Y and Liu Z 2017 Phys. Rev. X 7 041054
35 Vescoli V, Degiorgi L, Berger H and Forr L 1998 Phys. Rev. Lett. 81 453
36 Rossnagel K, Rotenberg E, Koh H, Smith N V and Kipp L 2005 Phys. Rev. B 72 121103
37 Valla T, Fedorov A V, Johnson P D, Xue J, Smith K E and DiSalvo F J 2000 Phys. Rev. Lett. 85 4759
38 Moncton D E, Axe J D and DiSalvo F J 1977 Phys. Rev. B 16 801
39 Withers R L and Bursill L A 1982 Phys. Rev. B 26 1469
40 Wang C, Giambattista B, Slough C G, Coleman R V and Subramanian M A 1990 Phys. Rev. B 42 8890
41 Galvis J A, Rodire P, Guillamon I, Osorio M R, Rodrigo J G, Cario L, Navarro-Moratalla E, Coronado E, Vieira S and Suderow H 2013 Phys. Rev. B 87 094502
42 Demsar J, Forr L, Berger H and Mihailovic D 2002 Phys. Rev. B 66 041101
43 Evtushinsky D V, Kordyuk A A, Zabolotnyy V B, Inosov D S, Bchner B, Berger H, Patthey L, Follath R and Borisenko S V 2008 Phys. Rev. Lett. 100 236402
44 Ruzicka B, Degiorgi L, Berger H, Gal R and Forr L 2001 Phys. Rev. Lett. 86 4136
45 Laverock J, Newby D Jr, Abreu E, Averitt R, Smith K E, Singh R P, Balakrishnan G, Adell J and Balasubramanian T 2013 Phys. Rev. B 88 035108
46 Barnett R L, Polkovnikov A, Demler E, Yin W G and Ku W 2006 Phys. Rev. Lett. 96 026406
47 Ge Y and Liu A Y 2012 Phys. Rev. B 86 104101
48 Inosov D S, Zabolotnyy V B, Evtushinsky D V, Kordyuk A A, Bchner B, Follath R, Berger H and Borisenko S V 2008 New J. Phys. 10 125027
49 Taraphder A, Koley S, Vidhyadhiraja N S and Laad M S 2011 Phys. Rev. Lett. 106 236405
50 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
51 Blchl P E 1994 Phys. Rev. B 50 17953
52 Kresse G and Furthmller J 1996 Comput. Mater. Sci. 6 15
53 Kresse G and Hafner J 1993 Phys. Rev. B 47 558
54 Kresse G and Furthmller J 1996 Phys. Rev. B 54 11169
55 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
56 Klime J, Bowler D R and Michaelides A 2009 J. Phys.: Condens. Matter 22 022201
57 Rossnagel K 2011 J. Phys.: Condens. Matter 23 213001
58 Clark OJ, Mazzola F, Feng J, Sunko V, Markovi I, Bawden L, Kim T K, King P D C and Bahramy M S 2019 Phys. Rev. B 99 045438
59 Kohn W 1967 Phys. Rev. Lett. 19 439
[1] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[2] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[3] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[4] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[5] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[6] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[7] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[8] Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance
Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军). Chin. Phys. B, 2022, 31(11): 117304.
[9] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[10] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[11] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[12] Nonlinear photoncurrent in transition metal dichalcogenide with warping term under illuminating of light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏, and Yun-Hai Zhang(张运海). Chin. Phys. B, 2021, 30(3): 037301.
[13] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
[14] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
Zhe Wang(王喆) and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(11): 116401.
[15] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
No Suggested Reading articles found!