|
|
Quantization of the band at the surface of charge density wave material 2H-TaSe2 |
Man Li(李满)1,2,†, Nan Xu(徐楠)3,†, Jianfeng Zhang(张建丰)1,†, Rui Lou(娄睿)1, Ming Shi(史明)4, Lijun Li(黎丽君)5, Hechang Lei(雷和畅)1, Cedomir Petrovic6, Zhonghao Liu(刘中灏)7, Kai Liu(刘凯)1, Yaobo Huang(黄耀波)2,‡, and Shancai Wang(王善才)1,§ |
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China;
3 Institute of Advanced Studies, Wuhan University, Wuhan 430072, China;
4 Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland;
5 Chongqing Technology and Busineee University, Chongqing 400067, China;
6 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA;
7 State Key Laboratory of Functional Materials for Informatics and Center for Excellence in Superconducting Electronics, SIMIT, Chinese Academy of Sciences, Shanghai 200050, China |
|
|
Abstract By using angle-resolved photoemission spectroscopy (ARPES) combined with the first-principles electronic structure calculations, we report the quantized states at the surface of a single crystal 2H-TaSe2. We have observed sub-bands of quantized states at the three-dimensional Brillouin zone center due to a highly dispersive band with light effective mass along kz direction. The quantized sub-bands shift upward towards EF while the bulk band at $\varGamma$ shifts downward with the decrease of temperature across charge density wave (CDW) formation. The band shifts could be intimately related to the CDW. While neither the two-dimensional Fermi-surface nesting nor purely strong electron-phonon coupling can explain the mechanism of CDW in 2H-TaSe2, our experiment may ignite the interest in understanding the CDW mechanism in this family.
|
Received: 13 January 2021
Revised: 08 February 2021
Accepted manuscript online: 25 February 2021
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774421, 11774424, 11574394, 11774423, 11822412, and 11874047), the National Key R&D Program of China (Grant Nos. 2016YFA0401002, 2018YFA0307000, 2016YFA0300504, and 2018FYA0305800), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2042018kf-0030). |
Corresponding Authors:
†These authors contributed equally. ‡Corresponding author. E-mail: huangyaobo@zjlab.org.cn §Corresponding author. E-mail: scw@ruc.edu.cn
|
Cite this article:
Man Li(李满), Nan Xu(徐楠), Jianfeng Zhang(张建丰), Rui Lou(娄睿), Ming Shi(史明), Lijun Li(黎丽君), Hechang Lei(雷和畅), Cedomir Petrovic, Zhonghao Liu(刘中灏), Kai Liu(刘凯), Yaobo Huang(黄耀波), and Shancai Wang(王善才) Quantization of the band at the surface of charge density wave material 2H-TaSe2 2021 Chin. Phys. B 30 047305
|
1 Santander-Syro A F, Copie O, Kondo T, Fortuna F, Pailhes S, Weht R, Qiu X G, Bertran F, Nicolaou A, Taleb-Ibrahimi A, Le Fevre P, Herranz G, Bibes M, Reyren N, Apertet Y, Lecoeur P, Barthlmy A and Rozenberg M J 2011 Nature 469 189 2 Meevasana W, King P D C, He R H, Mo S K, Hashimoto M, Tamai A, Songsiriritthigul P, Baumberger F and Shen Z X 2011 Nat. Mater. 10 114 3 Plumb N C, Salluzzo M, Razzoli E, Mnsson M, Falub M, Krempasky J, Matt C E, Chang J, Schulte M, Braun J, Ebert H, Minr J, Delley B, Zhou K J, Schmitt T, Shi M, Mesot J, Patthey L and Radovi M 2014 Phys. Rev. Lett. 113 086801 4 Wang Z, McKeownWalker S, Tamai A, Wang Y, Ristic Z, Bruno F Y, de la Torre A, Ricc S, Plumb N C, Shi M, Hlawenka P, Snchez-Barriga J, Varykhalov A, Kim T K, Hoesch M, King P D C, Meevasana W, Diebold U, Mesot J, Moritz B, Devereaux T P, Radovic M and Baumberger F 2016 Nat. Mater. 15 835 5 Abe S, Inaoka T and Hasegawa M 2002 Phys. Rev. B 66 205309 6 King P D C, Veal T D and McConville C F 2008 Phys. Rev. B 77 125305 7 King P D C, Veal T D, McConville CF, Ziga-Prez J, Muoz-Sanjos V, Hopkinson M, Rienks E D L, Fuglsang Jensen M and Hofmann Ph 2010 Phys. Rev. Lett. 104 256803 8 Hirahara T, Nagao T, Matsuda I, Bihlmayer G, Chulkov E V, Koroteev Y M and Hasegawa S 2007 Phys. Rev. B 75 035422 9 Matsuda I, Ohta T and Yeom H W 2002 Phys. Rev. B 65 085327 10 Nagamura N, Matsuda I, Miyata N, Hirahara T, Hasegawa S and Uchihashi T 2006 Phys. Rev. Lett. 96 256801 11 Ohtomo A and Hwang H Y 2004 Nature 427 423 12 Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science 313 1942 13 Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 14 Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559 15 Reyren N, Thiel S, Caviglia AD, Kourkoutis LF, Hammerl G, Richter C, Schneider CW, Kopp T, Retschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196 16 Brinkman A, Huijben M, van Zalk M, Huijben J, Zeitler U, Maan J C, van der Wiel W G, Rijnders G, Blank D H A and Hilgenkamp H 2007 Nat. Mater 6 493 17 Zhang Z and Yates J T 2012 Chem. Rev. 112 5520 18 Roch J G, Froehlicher G, Leisgang N, Makk P, Watanabe K, Taniguchi T and Warburton R J 2019 Nat. Nanotechnol. 14 432 19 Shen D W, Xie B P, Zhao J F, Yang L X, Fang L, Shi J, He R H, Lu D H, Wen H H and Feng D L 2007 Phys. Rev. Lett. 99 216404 20 Borisenko S V, Kordyuk A A, Yaresko A N, Zabolotnyy V B, Inosov D S, Schuster R, Bchner B, Weber R, Follath R, Patthey L and Berger H 2008 Phys. Rev. Lett. 100 196402 21 Li Y W, Jiang J, Yang H F, Prabhakaran D, Liu Z K, Yang L X and Chen Y L 2018 Phys. Rev. B 97 115118 22 Rice T M and Scott G K 1975 Phys. Rev. Lett. 35 120 23 Liu R, Olson C G, Tonjes W C and Frindt R F 1998 Phys. Rev. Lett. 80 5762 24 Liu R, Tonjes W C, Greanya V A, Olson C G and Frindt R F 2000 Phys. Rev. B 61 5212 25 Whangbo M H and Canadell E 1992 J. Am. Chem. Soc. 114 9587 26 McMillan W L 1977 Phys. Rev. B 16 643 27 van Wezel J, Nahai-Williamson P and Saxena S S 2010 Phys. Rev. B 81 165109 28 van Wezel J, Nahai-Williamson P and Saxena S S 2010 Europhys. Lett. 89 47004 29 Cercellier H, Monney C, Clerc F, Battaglia C, Despont L, Garnier M G, Beck H, Aebi P, Patthey L, Berger H and Forr L 2007 Phys. Rev. Lett. 99 146403 30 Gorkov L P 2012 Phys. Rev. B 85 165142 31 Dai J X, Calleja E, Alldredge J, Zhu X D, Li L J, Lu W J, Sun Y P, Wolf T, Berger H and McElroy K 2014 Phys. Rev. B 89 165140 32 Johannes M D and Mazin I I 2008 Phys. Rev. B 77 165135 33 Li L J, Deng X, Wang Z, Liu Y, Abeykoon M, Dooryhee E, Tomic A, Huang Y N, Warren J B, Bozin E S, Billinge S J L, Sun Y P, Zhu Y M, Kotliar G and Petrovic C 2017 npj Quantum Materials 2 11 34 Qiao S, Li X, Wang N, Ruan W, Ye C, Cai P, Hao Z Q, Yao H, Chen X H, Wu J, Wang Y Y and Liu Z 2017 Phys. Rev. X 7 041054 35 Vescoli V, Degiorgi L, Berger H and Forr L 1998 Phys. Rev. Lett. 81 453 36 Rossnagel K, Rotenberg E, Koh H, Smith N V and Kipp L 2005 Phys. Rev. B 72 121103 37 Valla T, Fedorov A V, Johnson P D, Xue J, Smith K E and DiSalvo F J 2000 Phys. Rev. Lett. 85 4759 38 Moncton D E, Axe J D and DiSalvo F J 1977 Phys. Rev. B 16 801 39 Withers R L and Bursill L A 1982 Phys. Rev. B 26 1469 40 Wang C, Giambattista B, Slough C G, Coleman R V and Subramanian M A 1990 Phys. Rev. B 42 8890 41 Galvis J A, Rodire P, Guillamon I, Osorio M R, Rodrigo J G, Cario L, Navarro-Moratalla E, Coronado E, Vieira S and Suderow H 2013 Phys. Rev. B 87 094502 42 Demsar J, Forr L, Berger H and Mihailovic D 2002 Phys. Rev. B 66 041101 43 Evtushinsky D V, Kordyuk A A, Zabolotnyy V B, Inosov D S, Bchner B, Berger H, Patthey L, Follath R and Borisenko S V 2008 Phys. Rev. Lett. 100 236402 44 Ruzicka B, Degiorgi L, Berger H, Gal R and Forr L 2001 Phys. Rev. Lett. 86 4136 45 Laverock J, Newby D Jr, Abreu E, Averitt R, Smith K E, Singh R P, Balakrishnan G, Adell J and Balasubramanian T 2013 Phys. Rev. B 88 035108 46 Barnett R L, Polkovnikov A, Demler E, Yin W G and Ku W 2006 Phys. Rev. Lett. 96 026406 47 Ge Y and Liu A Y 2012 Phys. Rev. B 86 104101 48 Inosov D S, Zabolotnyy V B, Evtushinsky D V, Kordyuk A A, Bchner B, Follath R, Berger H and Borisenko S V 2008 New J. Phys. 10 125027 49 Taraphder A, Koley S, Vidhyadhiraja N S and Laad M S 2011 Phys. Rev. Lett. 106 236405 50 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 51 Blchl P E 1994 Phys. Rev. B 50 17953 52 Kresse G and Furthmller J 1996 Comput. Mater. Sci. 6 15 53 Kresse G and Hafner J 1993 Phys. Rev. B 47 558 54 Kresse G and Furthmller J 1996 Phys. Rev. B 54 11169 55 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 56 Klime J, Bowler D R and Michaelides A 2009 J. Phys.: Condens. Matter 22 022201 57 Rossnagel K 2011 J. Phys.: Condens. Matter 23 213001 58 Clark OJ, Mazzola F, Feng J, Sunko V, Markovi I, Bawden L, Kim T K, King P D C and Bahramy M S 2019 Phys. Rev. B 99 045438 59 Kohn W 1967 Phys. Rev. Lett. 19 439 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|