Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 036801    DOI: 10.1088/1674-1056/abd392
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE

Di-Di Li(李迪迪)1, 3, Jing-Jing Chen(陈晶晶)1, 3, Xu-Jun Su(苏旭军)1, Jun Huang(黄俊) 1, Mu-Tong Niu(牛牧童) 1, Jin-Tong Xu(许金通)4, and Ke Xu(徐科) 1, 2, 3,
1 Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China; 2 Suzhou Nanowin Science and Technology Co., Ltd., Suzhou 215123, China; 3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 4 Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Abstract  AlN films grown on sputter-deposited and annealed AlN buffer layer by high temperature hydride vapor phase epitaxy (HVPE) have been fabricated and structurally characterized. The crystalline quality and surface morphology of as-grown AlN films with various V/III ratios were studied and compared. The XRD results showed that the crystalline quality of the AlN film could be optimized when the growth V/III ratio was 150. At the same time, the full width at half-maximum (FWHM) values of (0002)-and (10$\bar1$2)-plane were 64 arcsec and 648 arcsec, respectively. As revealed by AFM, the AlN films grown with higher V/III ratios of 150 and 300 exhibited apparent hillock-like surface structure due to the low density of screw threading dislocation (TD). The defects microstructure and strain field around the HVPE-AlN/sputtered-AlN/sapphire interfaces have been investigated by transmission electron microscopy (TEM) technique combined with geometric phase analysis (GPA). It was found that the screw TDs within AlN films intend to turn into loops or half-loops after originating from the AlN/sapphire interface, while the edge ones would bend first and then reacted with others within a region of 400 nm above the interface. Consequently, part of the edge TDs propagated to the surface vertically. The GPA analysis indicated that the voids extending from sapphire to HVPE-AlN layer were beneficial to relax the interfacial strain of the best quality AlN film grown with a V/III ratio of 150.
Keywords:  hydride vapor phase epitaxy (HVPE)      AlN      threading dislocation (TD)      sputter-deposition  
Received:  13 September 2020      Revised:  13 November 2020      Accepted manuscript online:  15 December 2020
PACS:  68.55.-a (Thin film structure and morphology)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Key Technologies R&D Program of China (Grant No. 2017YFB0404100) and Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences.
Corresponding Authors:  Corresponding author. E-mail: kxu2006@sinano.ac.cn   

Cite this article: 

Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Xu-Jun Su(苏旭军), Jun Huang(黄俊), Mu-Tong Niu(牛牧童), Jin-Tong Xu(许金通), and Ke Xu(徐科) Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE 2021 Chin. Phys. B 30 036801

1 Wang M X, Xu F J, Xie N, Sun Y H, Liu B Y, Qin Z X, Wang X Q and Shen B 2018 Cryst Eng. Comm. 20 6613
2 Deger C, Born E, Angerer H, Ambacher O, Stutzmann M, Hornsteiner J, Riha E and Fischerauer G 1998 Appl. Phys. Lett. 72 2400
3 Huang C Y, Wu P Y, Chang K S, Lin Y H, Peng W C, Chang Y Y, Li J P, Yen H W, Wu Y S, Miyake H and Kuo H C 2017 AIP Adv. 7 055110
4 Kinoshita T, Hironaka K, Obata T, Nagashima T, Dalmau R, Schlesser R, Moody B, Xie J, Inoue S i, Kumagai Y, Koukitu A and Sitar Z 2012 Appl. Phys. Express 5 122101
5 Usami S, Ando Y, Tanaka A, Nagamatsu K, Deki M, Kushimoto M, Nitta S, Honda Y, Amano H, Sugawara Y, Yao Y Z and Ishikawa Y 2018 Appl. Phys. Lett. 112 182106
6 Yan J, Wang J, Zhang Y, Cong P, Sun L, Tian Y, Zhao C and Li J 2015 J. Cryst. Growth 414 254
7 Dong P, Yan J, Wang J, Zhang Y, Geng C, Wei T, Cong P, Zhang Y, Zeng J, Tian Y, Sun L, Yan Q, Li J, Fan S and Qin Z 2013 Appl. Phys. Lett. 102 241113
8 Bai J, Dudley M, Sun W H, Wang H M and Khan M A 2006 Appl. Phys. Lett. 88 051903
9 He C, Zhao W, Wu H, Zhang S, Zhang K, He L, Liu N, Chen Z and Shen B 2018 Crystal Growth & Design 18 6816
10 Imura M, Fujimoto N, Okada N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasaki I, Noro T, Takagi T and Bandoh A 2007 J. Cryst. Growth 300 136
11 Zhang L, Xu F, Wang J, He C, Guo W, Wang M, Sheng B, Lu L, Qin Z, Wang X and Shen B 2016 Sci. Rep. 6 35934
12 Xiao S, Jiang N, Shojiki K, Uesugi K and Miyake H 2019 Jpn. J. Appl. Phys. 58 SC1003
13 Huang J, Niu M T, Zhang J C, Wang W, Wang J F and Xu K 2017 J. Cryst. Growth 459 159
14 Miyake H, Lin C H, Tokoro K and Hiramatsu K 2016 Journal of Crystal Growth 456 155
15 Taniyasu Y, Kasu M and Makimoto T 2007 J. Cryst. Growth 298 310
16 Liu J Q, Wang J F, Liu Y F, Huang K, Hu X J, Zhang Y M, Xu Y, Xu K and Yang H 2009 J. Cryst. Growth 311 3080
17 Uesugi K, Shojiki K, Tezen Y, Hayashi Y and Miyake H 2020 Appl. Phys. Lett. 116 062101
18 Heying B, Tarsa E J, Elsass C R, Fini P, DenBaars S P and Speck J S 1999 J. Appl. Phys. 85 6470
19 Su X, Zhang J, Huang J, Zhang J, Wang J and Xu K 2017 J. Cryst. Growth 467 82
20 Severino A and Iucolano F 2016 Physica Status Solidi (b) 253 801
21 Ben J, Shi Z, Zang H, Sun X, Liu X, L\"u W and Li D 2020 Appl. Phys. Lett. 116 251601
22 Huang J, Niu M, Sun M, Su X and Xu K 2019 Cryst Eng. Comm. 21 2431
23 Boichot R, Coudurier N, Mercier F, Lay S, Crisci A, Coindeau S, Claudel A, Blanquet E and Pons M 2013 Surf. Coat. Tech. 237 118
24 Kumagai Y, Enatsu Y, Ishizuki M, Kubota Y, Tajima J, Nagashima T, Murakami H, Takada K and Koukitu A 2010 J. Cryst. Growth 312 2530
25 Hagedorn S, Knauer A, Brunner F, Mogilatenko A, Zeimer U and Weyers M 2017 J. Cryst. Growth 479 16
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[3] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[4] Porous AlN films grown on C-face SiC by hydride vapor phase epitaxy
Jiafan Chen(陈家凡), Jun Huang(黄俊), Didi Li(李迪迪), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(7): 076802.
[5] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[6] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[7] Electrochemical liftoff of freestanding GaN by a thick highly conductive sacrificial layer grown by HVPE
Xiao Wang(王骁), Yu-Min Zhang(张育民), Yu Xu(徐俞), Zhi-Wei Si(司志伟), Ke Xu(徐科), Jian-Feng Wang(王建峰), and Bing Cao(曹冰). Chin. Phys. B, 2021, 30(6): 067306.
[8] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[9] Growth and doping of bulk GaN by hydride vapor phase epitaxy
Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), De-Min Cai(蔡德敏), Guo-Qiang Ren(任国强), Yu Xu(徐俞), Ming-Yue Wang(王明月), Xiao-Jian Hu(胡晓剑), Ke Xu(徐科). Chin. Phys. B, 2020, 29(2): 026104.
[10] Parasitic source resistance at different temperatures for AlGaN/AlN/GaN heterostructure field-effect transistors
Yan Liu(刘艳), Zhao-Jun Lin(林兆军), Yuan-Jie Lv(吕元杰), Peng Cui(崔鹏), Chen Fu(付晨), Ruilong Han(韩瑞龙), Yu Huo(霍宇), Ming Yang(杨铭). Chin. Phys. B, 2017, 26(9): 097104.
[11] Magnetic properties of AlN monolayer doped with group 1A or 2A nonmagnetic element: First-principles study
Ruilin Han(韩瑞林), Xiaoyang Chen(陈晓阳), Yu Yan(闫羽). Chin. Phys. B, 2017, 26(9): 097503.
[12] Electronic, optical, and mechanical properties of BN, AlN, and InN with zinc-blende structure under pressure
A R Degheidy, E B Elkenany. Chin. Phys. B, 2017, 26(8): 086103.
[13] Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator
Dong-Liang Bian(卞栋梁), Yun Wu(吴云), Min Jia(贾敏), Chang-Bai Long(龙昌柏), Sheng-Bo Jiao(焦胜博). Chin. Phys. B, 2017, 26(8): 084703.
[14] Structural characterization of Al0.55Ga0.45N epitaxial layer determined by high resolution x-ray diffraction and transmission electron microscopy
Qing-Jun Xu(徐庆君), Bin Liu(刘斌), Shi-Ying Zhang(张士英), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2017, 26(4): 047801.
[15] Electronic structures and magnetic properties of Zn- and Cd-doped AlN nanosheets: A first-principles study
Rui-Lin Han(韩瑞林), Shi-Min Jiang(姜世民), Yu Yan(闫羽). Chin. Phys. B, 2017, 26(2): 027502.
No Suggested Reading articles found!