|
|
Bismuth-content-dependent polarized Raman spectrum of InPBi alloy |
Guan-Nan Wei(魏冠男)1, Qing-Hai Tan(谭青海)1, Xing Dai(戴兴)1, Qi Feng(冯琦)1, Wen-Gang Luo(骆文刚)1, Yu Sheng(盛宇)1, Kai Wang(王凯)2, Wen-Wu Pan(潘文武)2, Li-Yao Zhang(张立瑶)2, Shu-Min Wang(王庶民)2, Kai-You Wang(王开友)1 |
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China |
|
|
Abstract We systematically investigate the optical properties of the InP1-xBix ternary alloys with 0≤ x≤ 2.46%, by using high resolution polarized Raman scattering measurement. Both InP-like and InBi-like optical vibration modes (LO) are identified in all the samples, suggesting that most of the Bi-atoms are incorporated into the lattice sites to substitute P-atoms. And the intensity of the InBi-like Raman mode is positively proportional to the Bi-content. Linear red-shift of the InP-like longitudinal optical vibration mode is observed to be 1.1 cm-1/Bi%, while that of the InP-like optical vibration overtone (2LO) is nearly doubled. In addition, through comparing the Z(XX)Z and Z(XY)Z Raman spectra, longitudinal-optical-plasmon-coupled (LOPC) modes are identified in all the samples, and their intensities are found to be proportional to the electron concentrations.
|
Received: 28 January 2016
Revised: 07 March 2016
Accepted manuscript online:
|
PACS:
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
63.20.kd
|
(Phonon-electron interactions)
|
|
63.20.dd
|
(Measurements)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB643903) and the National Natural Science Foundation of China (Grant Nos. 61225021, 11474272, and 11174272). |
Corresponding Authors:
Kai-You Wang
E-mail: kywang@semi.ac.cn
|
Cite this article:
Guan-Nan Wei(魏冠男), Qing-Hai Tan(谭青海), Xing Dai(戴兴), Qi Feng(冯琦), Wen-Gang Luo(骆文刚), Yu Sheng(盛宇), Kai Wang(王凯), Wen-Wu Pan(潘文武), Li-Yao Zhang(张立瑶), Shu-Min Wang(王庶民), Kai-You Wang(王开友) Bismuth-content-dependent polarized Raman spectrum of InPBi alloy 2016 Chin. Phys. B 25 066301
|
[1] |
Gu Y, Wang K, Zhou H F, Li Y Y, Cao C F, Zhang L Y, Zhang Y G, Gong Q, and Wang S M 2014 Nanoscale Res. Lett. 9 24
|
[2] |
Kondow M, Nakatsuka S, Kitatani T, Yazawa Y and Okai M 1996 Jpn. J. Appl. Phys. 35 5711
|
[3] |
Svensson S P, Hier H, Sarney W L, Donetsky D, Wang D and Belenky G 2012 J. Vac. Sci. Technol. B 30 02B109
|
[4] |
Song Y, Wang S, Roy I S, Shi P, Hallen A and Lai Z 2013 J. Cryst. Growth 378 323
|
[5] |
Wang K, Gu Y, Zhou H F, Zhang L Y, Kang C Z, Wu M J, Pan W W, Lu P F, Gong Q and Wang S M 2013 Sci. Rep. 4 5449
|
[6] |
Yue L, Wang P, Wang K, Wu X Y, Pan W W, Li Y Y, Song Y X, Gu Y, Gong Q, Wang S M, Ning J Q and Xu S J 2015 Appl. Phys. Express 8 041201
|
[7] |
Pan W W, Steele J A, Wang P, Wang K, Song Y X, Yue L, Wu X Y, Xu H, Zhang Z P, Xu S J, Lu P F, Wu L Y, Gong Q and Wang S M 2015 Semicond. Sci. Tech. 30 094003
|
[8] |
Das S C, Das T D and Dhar S 2012 Infrared Phys. Technol. 55 306
|
[9] |
Zhang X, Han W P, Wu J B, Milana S, Lu Y, Li Q Q, Ferrari A C and Tan P H 2013 Phys. Rev. B 87 115413
|
[10] |
Chen Y F, Dumcenco D O, Zhu Y M, Zhang X, Mao N N, Feng Q L, Zhang M, Zhang J, Tan P H, Huang Y H and Xie L M 2014 Nanoscale 6 2833
|
[11] |
Bedel E, Landa G, Carles R, Redouls J P and Renucci J B 1986 J. Phys. C: Solid State Phys. 19 1471
|
[12] |
Lin H H, Chung P K and Yen S T 2014 Mater. Res. Express 1 045901
|
[13] |
Seong M J, Francoeur S, Yoon S, Mascarenhas A, Tixier S, damcyk M and Tiedje T 2005 Superlattices Microstruct. 37 394
|
[14] |
Verma P, Oe K, Yamada M, Harima H, Herms M and Irmer G 2001 J. Appl. Phys. 89 1657
|
[15] |
Yuasa T, Naritsuka S, Mannoh M, Shinozaki K, Yamanaka K, Nomura Y, Mihara M and Ishii M 1986 Phys. Rev. B 33 1222
|
[16] |
Ernst S, Goi A R, Syassen K and Cardona M 1996 Phys. Rev. B 53 1297
|
[17] |
Wan K and Young J F 1990 Phys. Rev. B 41 10772
|
[18] |
Artús L, Cuscó R, Ibáñez J, Blanco N and González-Díaz G 1999 Phys. Rev. B 60 5456
|
[19] |
Mlayah A, Carles R, Landa G, Bedel E and Muñoz-Yagüe A 1991 J. Appl. Phys. 69 4064
|
[20] |
Steele J, Lewis R A, Henini M, Lemine O M and Fan D 2014 Opt. Express 22 11680
|
[21] |
Artús L, Cuscó R, Martin J M and González-Díaz G 1994 Phys. Rev. B 50 11552
|
[22] |
Ulrici B and Jahne E 1976 Phys. Stat. Sol. (b) 74 601
|
[23] |
Yu S J, Asahi H, Emura S, Sumida H and Gonda S 1989 J. Appl. Phys. 66 856
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|