Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 027401    DOI: 10.1088/1674-1056/28/2/027401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties

San-Sheng Wang(王三胜)1, Fang Li(李方)1, Han Wu(吴晗)1, Yu Zhang(张玉)1, Suleman Muḥammad(穆罕默德苏尔曼)1, Peng Zhao(赵鹏)1, Xiao-Yun Le(乐小云)1, Zhi-Song Xiao(肖志松)1, Li-Xiang Jiang(姜利祥)2, Xue-Dong Ou(欧学东)2, Xiao-Ping Ouyang(欧阳晓平)1,2
1 Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of Education, Beihang University, Beijing 100191, China;
2 Beijing Institute of Spacecraft Engineering Environment, Beijing 100094, China
Abstract  

To investigate the damage profiles of high-fluence low-energy proton irradiation on superconducting materials and related devices, Raman characterization and electrical transport measurement of 40-keV-proton irradiated YBa2Cu3O7-x (YBCO) thin films are carried out. From micro-Raman spectroscopy and x-ray diffraction studies, the main component of proton-radiation-induced defects is found to be the partial transition of superconducting orthorhombic phase to the semiconducting tetragonal phase and non-superconducting secondary phase. The results indicate that the defects induced in the conducting CuO2 planes, such as increased oxygen vacancies and interstitials, can result in an increase in the resistivity but a decrease in the transition temperature TC with the increase in the fluence of proton irradiation, which is confirmed in the electrical transport measurements. Especially, zero-resistance temperature TC0 is not observed at a fluence of 1015 p/cm2. Furthermore, the variation of activation energy U0 can be explained by the plastic-flux creep theory, which indicates that the plastic deformation and entanglement of vortices in a weakly pinned vortex liquid are caused by disorders of point-like defects. Point-like disorders are demonstrated to be the main contribution to the low-energy proton radiation damage in YBCO thin films. These disorders are likely to cause flux creep by thermally assisted flux flow, which may increase noise and reduce the precision of superconducting devices.

Keywords:  superconductors      proton radiation      micro-Raman spectra      electrical transport  
Received:  31 August 2018      Revised:  23 November 2018      Accepted manuscript online: 
PACS:  74.25.nd (Raman and optical spectroscopy)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
  74.25.-q (Properties of superconductors)  
  61.05.C- (X-ray diffraction and scattering)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61473023), the Aerospace Science and Technology Innovation Fund, CASC and International S & T Cooperation Program of China (ISTCP) (Grant No. 2015DFR80190).

Corresponding Authors:  San-Sheng Wang     E-mail:  wangssh@buaa.edu.cn

Cite this article: 

San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平) Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties 2019 Chin. Phys. B 28 027401

[1] Lee L P, Char K, Colclough M S and Zaharchuk G 2017 Fundamentals of Radiation Material Science Metals and Alloys, 2nd edn. (Berlin: Springer) pp. 131-138, ISBN 978-1-4939-3436-2, ISBN 978-1-4939-3438-6 (eBook)
[2] Tinchev S S 1990 Supercond. Sci. Technol. 3 500
[3] Mansour R R, Jolley B, Ye S, Thomson F S and Dokas V 1996 IEEE Trans. Microw. Theory Tech. 44 1322
[4] Xiong G C, Li H C, Linker G, Linker G and Meyer O 1988 Phys. Rev. B 38 240
[5] Maisch W G, Summers G P, Campbell A B, Dale C J, Ritter J C, Knudson A R, Elam W T, Henman H, Kirkl, J P, Neiser R A and Osofsky M S 1987 IEEE Trans. Nucl. Sci. 34 1781
[6] Weaver B D, Jackson E M, Summers G P, Chrisey D B, Horwitz J S, Pond J M, Newman H S and Burke E A 1991 IEEE Trans. Nucl. Sci. 38 1284
[7] Meyer O, Egner B, Xiong G C, Xi X X, Linker G and Geerk J 1989 Nucl. Instrum. Methods Phys. Res. Sect. B 39 628
[8] Zhao Y J, Chu W K, Davis M F, Wolfe J C, Deshmukh S C, Economou D J and Mcguire A 1991 Physica C 184 144
[9] Civale L, Marwick A D, McElfresh M W, Worthington T K, Malozemoff A P, Holtzberg F H, Thompson J R and Kirk M A 1990 Phys. Rev. Lett. 65 1164
[10] Greene G A, Gupta R C, Sampson W B and Snead C L 2009 IEEE Trans. Appl. Supercond. 19 3164
[11] Pogrebnyakov A V Dostanko A P and Ol’ga V M 2000 Physica B 284 821
[12] Wang S S, Zhang Z L, Wang L, Gao L K and Liu J 2017 Physica C 534 68
[13] Alford N M, Clegg W J, Harmer M A, Birchall J D, Kendall K and Jones D H 1988 Nature 332 58
[14] Chromik Š Camerlingo C, Sojková M, Štrbík V, Talacko M, Malka I, Bar I, Bareli G and Jung G 2017 Appl. Surf. Sci. 395 42
[15] Breit V, Schweiss P, Hauff R, Wühl H, Claus H, Rietschel H, Erb A and Müller-Vogt G 1995 Phys. Rev. B 52 R15727
[16] Camerlingo C, Delfino I and Lepore M 2002 Supercond. Sci. Technol. 15 1606
[17] Huong P V, Bruyere J C, Bustarret E and Grandchamp P 1989 Solid State Commun. 72 191
[18] Maroni V A, Li Y, Feldmann D M and Jia Q X 2007 J. Appl. Phys. 102 113909
[19] Lee E, Yoon S, Um Y M, Jo W, Seo C W, Cheong H, Kim B J, Lee H G and Hong G W 2007 Physica C 463 732
[20] Zhai H Y, Zhang Z H and Chu W K 2001 Appl. Phys. Lett. 78 649
[21] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818
[22] Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S and Garner F A 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 310 75
[23] Petrean A M, Paulius L M, Kwok W K, Fendrich J A and Crabtree G W 2000 Phys. Rev. Lett. 84 5852
[24] Lee H S, Bartkowiak M, Kim J S and Lee H J 2010 Phys. Rev. B 82 104523
[25] Abulafia Y, Shaulov A, Wolfus Y, Prozorov R, Burlachkov L, Yeshurun, Majer D, Zeldov E, Wühl Y, Geshkenbein V B and Vinokur V M 1996 Phys. Rev. Lett. 77 1596
[26] Perkins G K, Cohen L F, Zhukov A A and Caplin A D 1995 Phys. Rev. B 51 8513
[27] Küpfer H, Gordeev S N, Jahn W, Kresse R, Meier-Hirmer R, Wolf T, Zhukov A A, Salama K and Lee D 1994 Phys. Rev. B 50 7016
[28] Blatter G, Feigel’man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
[29] Fisher M P 1989 Phys. Rev. Lett. 62 1415
[30] Geshkenbein V, Larkin A, Feigel’Man M and Vinokur V 1989 Physica C 162 239
[31] Vinokur V M, Feigel’man M V, Geshkenbein V B and Larkin A I 1990 Phys. Rev. Lett. 65 259
[32] Kierfeld J, Nordborg H and Vinokur V M 2000 Phys. Rev. Lett. 85 4948
[33] Kirk M A 1993 Cryogenics 33 235
[34] Jia Y, LeRoux M, Miller D J, Wen J G, Kwok W K, Welp U, Rupich M W, Li X, Sathyamurthy S, Fleshler S, Malozemoff A P, Kayani A, Ayala-Valenzuela O and Civale L 2013 Appl. Phys. Lett. 103 122601
[35] Was G S 2017 Fundamentals of Radiation Material Science Metals and Alloys, 2nd edn. (Berlin: Springer) pp. 131-138, ISBN 978-1-4939-3436-2, ISBN 978-1-4939-3438-6 (eBook)
[36] Kes P H, Aarts J, Van den Berg J, Van der Beek C J and Mydosh J A 1989 Supercond. Sci. Technol. 1 242
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[3] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[4] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[5] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[6] Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors
Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰). Chin. Phys. B, 2021, 30(9): 097402.
[7] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[8] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[9] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[10] Superconducting anisotropy and vortex pinning in CaKFe4As4 and KCa2Fe4As4F2
A B Yu(于奥博), Z Huang(黄喆), C Zhang(张驰), Y F Wu(吴宇峰), T Wang(王腾), T Xie(谢涛), C Liu(刘畅), H Li(李浩), W Peng(彭炜), H Q Luo(罗会仟), G Mu(牟刚), H Xiao(肖宏), L X You(尤立星), and T Hu(胡涛). Chin. Phys. B, 2021, 30(2): 027401.
[11] Relevance of 3d multiplet structure in nickelate and cuprate superconductors
Mi Jiang(蒋密). Chin. Phys. B, 2021, 30(10): 107103.
[12] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[13] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[14] Specific heat in superconductors
Hai-Hu Wen(闻海虎). Chin. Phys. B, 2020, 29(1): 017401.
[15] Effect of defects properties on InP-based high electron mobility transistors
Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2019, 28(7): 078501.
No Suggested Reading articles found!