CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties |
San-Sheng Wang(王三胜)1, Fang Li(李方)1, Han Wu(吴晗)1, Yu Zhang(张玉)1, Suleman Muḥammad(穆罕默德苏尔曼)1, Peng Zhao(赵鹏)1, Xiao-Yun Le(乐小云)1, Zhi-Song Xiao(肖志松)1, Li-Xiang Jiang(姜利祥)2, Xue-Dong Ou(欧学东)2, Xiao-Ping Ouyang(欧阳晓平)1,2 |
1 Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of Education, Beihang University, Beijing 100191, China;
2 Beijing Institute of Spacecraft Engineering Environment, Beijing 100094, China |
|
|
Abstract To investigate the damage profiles of high-fluence low-energy proton irradiation on superconducting materials and related devices, Raman characterization and electrical transport measurement of 40-keV-proton irradiated YBa2Cu3O7-x (YBCO) thin films are carried out. From micro-Raman spectroscopy and x-ray diffraction studies, the main component of proton-radiation-induced defects is found to be the partial transition of superconducting orthorhombic phase to the semiconducting tetragonal phase and non-superconducting secondary phase. The results indicate that the defects induced in the conducting CuO2 planes, such as increased oxygen vacancies and interstitials, can result in an increase in the resistivity but a decrease in the transition temperature TC with the increase in the fluence of proton irradiation, which is confirmed in the electrical transport measurements. Especially, zero-resistance temperature TC0 is not observed at a fluence of 1015 p/cm2. Furthermore, the variation of activation energy U0 can be explained by the plastic-flux creep theory, which indicates that the plastic deformation and entanglement of vortices in a weakly pinned vortex liquid are caused by disorders of point-like defects. Point-like disorders are demonstrated to be the main contribution to the low-energy proton radiation damage in YBCO thin films. These disorders are likely to cause flux creep by thermally assisted flux flow, which may increase noise and reduce the precision of superconducting devices.
|
Received: 31 August 2018
Revised: 23 November 2018
Accepted manuscript online:
|
PACS:
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
61.05.C-
|
(X-ray diffraction and scattering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61473023), the Aerospace Science and Technology Innovation Fund, CASC and International S & T Cooperation Program of China (ISTCP) (Grant No. 2015DFR80190). |
Corresponding Authors:
San-Sheng Wang
E-mail: wangssh@buaa.edu.cn
|
Cite this article:
San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平) Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties 2019 Chin. Phys. B 28 027401
|
[1] |
Lee L P, Char K, Colclough M S and Zaharchuk G 2017 Fundamentals of Radiation Material Science Metals and Alloys, 2nd edn. (Berlin: Springer) pp. 131-138, ISBN 978-1-4939-3436-2, ISBN 978-1-4939-3438-6 (eBook)
|
[2] |
Tinchev S S 1990 Supercond. Sci. Technol. 3 500
|
[3] |
Mansour R R, Jolley B, Ye S, Thomson F S and Dokas V 1996 IEEE Trans. Microw. Theory Tech. 44 1322
|
[4] |
Xiong G C, Li H C, Linker G, Linker G and Meyer O 1988 Phys. Rev. B 38 240
|
[5] |
Maisch W G, Summers G P, Campbell A B, Dale C J, Ritter J C, Knudson A R, Elam W T, Henman H, Kirkl, J P, Neiser R A and Osofsky M S 1987 IEEE Trans. Nucl. Sci. 34 1781
|
[6] |
Weaver B D, Jackson E M, Summers G P, Chrisey D B, Horwitz J S, Pond J M, Newman H S and Burke E A 1991 IEEE Trans. Nucl. Sci. 38 1284
|
[7] |
Meyer O, Egner B, Xiong G C, Xi X X, Linker G and Geerk J 1989 Nucl. Instrum. Methods Phys. Res. Sect. B 39 628
|
[8] |
Zhao Y J, Chu W K, Davis M F, Wolfe J C, Deshmukh S C, Economou D J and Mcguire A 1991 Physica C 184 144
|
[9] |
Civale L, Marwick A D, McElfresh M W, Worthington T K, Malozemoff A P, Holtzberg F H, Thompson J R and Kirk M A 1990 Phys. Rev. Lett. 65 1164
|
[10] |
Greene G A, Gupta R C, Sampson W B and Snead C L 2009 IEEE Trans. Appl. Supercond. 19 3164
|
[11] |
Pogrebnyakov A V Dostanko A P and Ol’ga V M 2000 Physica B 284 821
|
[12] |
Wang S S, Zhang Z L, Wang L, Gao L K and Liu J 2017 Physica C 534 68
|
[13] |
Alford N M, Clegg W J, Harmer M A, Birchall J D, Kendall K and Jones D H 1988 Nature 332 58
|
[14] |
Chromik Š Camerlingo C, Sojková M, Štrbík V, Talacko M, Malka I, Bar I, Bareli G and Jung G 2017 Appl. Surf. Sci. 395 42
|
[15] |
Breit V, Schweiss P, Hauff R, Wühl H, Claus H, Rietschel H, Erb A and Müller-Vogt G 1995 Phys. Rev. B 52 R15727
|
[16] |
Camerlingo C, Delfino I and Lepore M 2002 Supercond. Sci. Technol. 15 1606
|
[17] |
Huong P V, Bruyere J C, Bustarret E and Grandchamp P 1989 Solid State Commun. 72 191
|
[18] |
Maroni V A, Li Y, Feldmann D M and Jia Q X 2007 J. Appl. Phys. 102 113909
|
[19] |
Lee E, Yoon S, Um Y M, Jo W, Seo C W, Cheong H, Kim B J, Lee H G and Hong G W 2007 Physica C 463 732
|
[20] |
Zhai H Y, Zhang Z H and Chu W K 2001 Appl. Phys. Lett. 78 649
|
[21] |
Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818
|
[22] |
Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S and Garner F A 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 310 75
|
[23] |
Petrean A M, Paulius L M, Kwok W K, Fendrich J A and Crabtree G W 2000 Phys. Rev. Lett. 84 5852
|
[24] |
Lee H S, Bartkowiak M, Kim J S and Lee H J 2010 Phys. Rev. B 82 104523
|
[25] |
Abulafia Y, Shaulov A, Wolfus Y, Prozorov R, Burlachkov L, Yeshurun, Majer D, Zeldov E, Wühl Y, Geshkenbein V B and Vinokur V M 1996 Phys. Rev. Lett. 77 1596
|
[26] |
Perkins G K, Cohen L F, Zhukov A A and Caplin A D 1995 Phys. Rev. B 51 8513
|
[27] |
Küpfer H, Gordeev S N, Jahn W, Kresse R, Meier-Hirmer R, Wolf T, Zhukov A A, Salama K and Lee D 1994 Phys. Rev. B 50 7016
|
[28] |
Blatter G, Feigel’man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
|
[29] |
Fisher M P 1989 Phys. Rev. Lett. 62 1415
|
[30] |
Geshkenbein V, Larkin A, Feigel’Man M and Vinokur V 1989 Physica C 162 239
|
[31] |
Vinokur V M, Feigel’man M V, Geshkenbein V B and Larkin A I 1990 Phys. Rev. Lett. 65 259
|
[32] |
Kierfeld J, Nordborg H and Vinokur V M 2000 Phys. Rev. Lett. 85 4948
|
[33] |
Kirk M A 1993 Cryogenics 33 235
|
[34] |
Jia Y, LeRoux M, Miller D J, Wen J G, Kwok W K, Welp U, Rupich M W, Li X, Sathyamurthy S, Fleshler S, Malozemoff A P, Kayani A, Ayala-Valenzuela O and Civale L 2013 Appl. Phys. Lett. 103 122601
|
[35] |
Was G S 2017 Fundamentals of Radiation Material Science Metals and Alloys, 2nd edn. (Berlin: Springer) pp. 131-138, ISBN 978-1-4939-3436-2, ISBN 978-1-4939-3438-6 (eBook)
|
[36] |
Kes P H, Aarts J, Van den Berg J, Van der Beek C J and Mydosh J A 1989 Supercond. Sci. Technol. 1 242
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|