Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 056401    DOI: 10.1088/1674-1056/27/5/056401
RAPID COMMUNICATION Prev   Next  

Compression behavior and spectroscopic properties of insensitive explosive 1,3,5-triamino-2,4,6-trinitrobenzene from dispersion-corrected density functional theory

Yan Su(苏艳)1, Junyu Fan(范俊宇)1, Zhaoyang Zheng(郑朝阳)2, Jijun Zhao(赵纪军)1, Huajie Song(宋华杰)3
1 Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China;
2 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China;
3 Beijing Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  

Using dispersion corrected density functional theory, we systematically examined the pressure effect on crystal structure, cell volume, and band gap of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) to understand its extraordinary chemical stability. Analysis of the Mulliken population and the electron density of states implied a possible charge transfer in TATB with increasing pressure. Raman and infrared spectra of TATB under hydrostatic pressure up to 30 GPa were simulated. The observed strong coupling between NH2 groups and NO2 groups with increasing pressure, which is considered to have a tendency of energy transfer with these vibrational modes, was analyzed. The pressure-induced frequency shift of selected vibrational modes indicated minor changes of molecular conformation mainly by the rotation of NH2 groups. Compression behavior and spectroscopic property studies are expected to shed light on the physical and chemical properties of TATB on an atomistic scale.

Keywords:  1,3,5-triamino-2,4,6-trinitrobenzene      high-pressure behavior      molecular conformation      Raman spectra  
Received:  18 January 2018      Revised:  08 February 2018      Accepted manuscript online: 
PACS:  64.70.kt (Molecular crystals)  
  91.60.Gf (High-pressure behavior)  
  78.30.-j (Infrared and Raman spectra)  
Fund: 

Project supported by the Science Challenge Project of China (Grant No.TZ2016001),the National Natural Science Foundation of China (Grant Nos.11674046 and 11372053),the Fundamental Research Funds for the Central Universities of China (Grant No.DUT17GF203),the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,China (Grant No.KFJJ16-01M),and the Supercomputing Center of Dalian University of Technology,China.

Corresponding Authors:  Jijun Zhao, Huajie Song     E-mail:  zhaojj@dlut.edu.cn;song_huajie@iapcm.ac.cn

Cite this article: 

Yan Su(苏艳), Junyu Fan(范俊宇), Zhaoyang Zheng(郑朝阳), Jijun Zhao(赵纪军), Huajie Song(宋华杰) Compression behavior and spectroscopic properties of insensitive explosive 1,3,5-triamino-2,4,6-trinitrobenzene from dispersion-corrected density functional theory 2018 Chin. Phys. B 27 056401

[11] Pravica M, Yulga B, Tkachev S and Liu Z X 2009 J. Phys. Chem. A 113 9133
[1] Sikder A K, Maddala G, Agrawal J P and Singh H 2001 J. Hazard. Mater. 84 1
[12] Davidson A J, Dias R, Dattelbaum D and Yoo C 2011 J. Chem. Phys. 135 174507
[2] Badgujar D M, Talawar M B, Asthana S N and Mahulikar P P 2008 J. Hazard. Mater. 15 289
[13] Saint-Amans C, Hebert P, Doucet M and de Resseguier T 2015 J. Appl. Phys. 117 023102
[3] Cady H H and Larson A C 1965 Acta Crystallogr. 18 485
[14] Wu C J, Yang L H and Fried L E 2003 Phys. Rev. B 67 235101
[4] Olinger B W and Cady H H 1976 in Proceedings:Sixth International Symposium on Detonation, Coronado, California, USA, August 24-27, p. 224
[15] Liu H, Zhao J J, Ji G F, Wei D Q and Gong Z Z 2006 Phys. Lett. A 358 63
[5] Stevens L L, Velisavljevic N, Hooks D E and Dattelbaum D M 2008 Propell. Explos. Pyrot. 33 286
[16] Liu H, Zhao J J, Du J G, Gong Z Z, Ji G F and Wei D Q 2007 Phys. Lett. A 367 383
[6] Vergoten G, Fleury G, Blain M and Odiot S 1985 J. Raman Spectrosc. 16 143
[17] Byrd E F C and Rice B M 2007 J. Phys. Chem. C 111 2787
[7] McGrane S D and Shreve A P 2003 J. Chem. Phys. 119 5834
[18] Grimme S 2004 J. Comput. Chem. 25 1463
[8] McGrane S D, Barber J and Quenneville J 2005 J. Phys. Chem. A 109 9919
[19] Grimme S 2006 J. Comput. Chem. 27 1787
[9] Satija S K, Swanson B, Eckert J and Goldstone J A 1991 J. Phys. Chem. 95 10103
[20] Dion M, Rydberg H, Schroder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
[10] Pravica M, Yulga B, Liu Z X and Tschauner O 2007 Phys. Rev. B 76 064102
[21] Neumann M A and Perrin M A 2005 J. Phys. Chem. B 109 15531
[11] Pravica M, Yulga B, Tkachev S and Liu Z X 2009 J. Phys. Chem. A 113 9133
[22] Sorescu D C and Rice B M 2010 J. Phys. Chem. C 114 6734
[12] Davidson A J, Dias R, Dattelbaum D and Yoo C 2011 J. Chem. Phys. 135 174507
[23] Landerville A C, Conroy M W, Budzevich M M, Lin Y, White C T and Oleynik I I 2010 Appl. Phys. Lett. 97 251908
[13] Saint-Amans C, Hebert P, Doucet M and de Resseguier T 2015 J. Appl. Phys. 117 023102
[24] Budzevich M M, Landerville A C, Conroy M W, Lin Y, Oleynik I I and White C T 2010 J. Appl. Phys. 107 113524
[14] Wu C J, Yang L H and Fried L E 2003 Phys. Rev. B 67 235101
[25] Wu Q, Zhu W H and Xiao H M 2014 RSC Adv. 4 53149
[15] Liu H, Zhao J J, Ji G F, Wei D Q and Gong Z Z 2006 Phys. Lett. A 358 63
[26] Wu Q, Chen H, Xiong G L, Zhu W H and Xiao H M 2015 J. Phys. Chem. C 119 16500
[16] Liu H, Zhao J J, Du J G, Gong Z Z, Ji G F and Wei D Q 2007 Phys. Lett. A 367 383
[27] Rykounov A A 2015 J. Appl. Phys. 117 215901
[17] Byrd E F C and Rice B M 2007 J. Phys. Chem. C 111 2787
[28] Manaa M R and Fried L E 2012 J. Phys. Chem. C 116 2116
[18] Grimme S 2004 J. Comput. Chem. 25 1463
[29] Ojeda O U and Cagin T 2011 J. Phys. Chem. B 115 12085
[19] Grimme S 2006 J. Comput. Chem. 27 1787
[30] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.:Condens. Matter 14 2717
[20] Dion M, Rydberg H, Schroder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
[31] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Neumann M A and Perrin M A 2005 J. Phys. Chem. B 109 15531
[32] Hamann D, Schlüter M and Chiang C 1979 Phy. Rev. Lett. 43 1494
[22] Sorescu D C and Rice B M 2010 J. Phys. Chem. C 114 6734
[33] Fan J Y, Zheng Z Y, Su Y and Zhao J J 2017 Mol. Simul. 43 568
[23] Landerville A C, Conroy M W, Budzevich M M, Lin Y, White C T and Oleynik I I 2010 Appl. Phys. Lett. 97 251908
[34] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Budzevich M M, Landerville A C, Conroy M W, Lin Y, Oleynik I I and White C T 2010 J. Appl. Phys. 107 113524
[35] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[25] Wu Q, Zhu W H and Xiao H M 2014 RSC Adv. 4 53149
[36] Refson K, Clark S J and Tulip P R 2006 Phys. Rev. B 73 155114
[26] Wu Q, Chen H, Xiong G L, Zhu W H and Xiao H M 2015 J. Phys. Chem. C 119 16500
[37] Zhu W H and Xiao H M 2010 Struct. Chem. 21 657
[27] Rykounov A A 2015 J. Appl. Phys. 117 215901
[38] Dreger Z A, Tao Y C and Gupta Y M 2014 J. Phys. Chem. A 118 5002
[28] Manaa M R and Fried L E 2012 J. Phys. Chem. C 116 2116
[39] Östmark H 1995 AIP Conf. Proc. 370 871
[29] Ojeda O U and Cagin T 2011 J. Phys. Chem. B 115 12085
[40] He Z H, Chen J and Wu Q 2017 J. Phys. Chem. C 121 8227
[30] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.:Condens. Matter 14 2717
[41] Tiwari S C, Nomura K, Kalia R K, Nakano A and Vashishta P 2017 J. Phys. Chem. C 121 16029
[31] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Hamann D, Schlüter M and Chiang C 1979 Phy. Rev. Lett. 43 1494
[33] Fan J Y, Zheng Z Y, Su Y and Zhao J J 2017 Mol. Simul. 43 568
[34] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[35] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[36] Refson K, Clark S J and Tulip P R 2006 Phys. Rev. B 73 155114
[37] Zhu W H and Xiao H M 2010 Struct. Chem. 21 657
[38] Dreger Z A, Tao Y C and Gupta Y M 2014 J. Phys. Chem. A 118 5002
[39] Östmark H 1995 AIP Conf. Proc. 370 871
[40] He Z H, Chen J and Wu Q 2017 J. Phys. Chem. C 121 8227
[41] Tiwari S C, Nomura K, Kalia R K, Nakano A and Vashishta P 2017 J. Phys. Chem. C 121 16029
[1] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[2] Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system
Qilin Ye(叶旗林), Dan Chen(陈旦), and Changgui Lin(林常规). Chin. Phys. B, 2021, 30(1): 016302.
[3] Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries
Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣). Chin. Phys. B, 2020, 29(4): 048202.
[4] Effect of metal fluorides on chromium ions doped bismuth borate glasses for optical applications
L Haritha, K Chandra Sekhar, R Nagaraju, G Ramadevudu, Vasanth G Sathe, Md. Shareefuddin. Chin. Phys. B, 2019, 28(3): 038101.
[5] Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties
San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2019, 28(2): 027401.
[6] Optical phonon behavior and magnetism of columbite Zn0.8Co0.2Nb2O6
Liang Li(李亮), Xiaohan Wang(王晓晗), Ying Liu(刘莹), Fangfei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2019, 28(12): 128104.
[7] Measurement of transient Raman spectrum on gas-gun loading platform and its application in liquid silane
Yi-Gao Wang(汪贻高), Fu-Sheng Liu(刘福生), Qi-Jun Liu(刘其军), Wen-Peng Wang(王文鹏), Ming-Jian Zhang(张明建), Feng Xi(习锋), Ling-Cang Cai(蔡灵仓), Ning-Chao Zhang(张宁超). Chin. Phys. B, 2017, 26(10): 103301.
[8] Bismuth-content-dependent polarized Raman spectrum of InPBi alloy
Guan-Nan Wei(魏冠男), Qing-Hai Tan(谭青海), Xing Dai(戴兴), Qi Feng(冯琦), Wen-Gang Luo(骆文刚), Yu Sheng(盛宇), Kai Wang(王凯), Wen-Wu Pan(潘文武), Li-Yao Zhang(张立瑶), Shu-Min Wang(王庶民), Kai-You Wang(王开友). Chin. Phys. B, 2016, 25(6): 066301.
[9] Structural transitions of SWNT filled with C60 under high pressure
Yong-gang Zou(邹永刚), Li Xu(徐莉), Kun Tian(田锟), He Zhang(张贺), Xiao-hui Ma(马晓辉), Ming-guang Yao(姚明光). Chin. Phys. B, 2016, 25(5): 056101.
[10] High-pressure Raman study of solid hydrogen up to 300 GPa
Xiaoli Huang(黄晓丽), Fangfei Li(李芳菲), Yanping Huang(黄艳萍), Gang Wu(吴刚), Xin Li(李鑫), Qiang Zhou(周强), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2016, 25(3): 037401.
[11] Water-assisted highly enhanced crystallographic etching of graphene by iron catalysts
Xue Lei-Jiang (薛磊江), Yu Fang (余芳), Zhou Hai-Qing (周海青), Sun Lian-Feng (孙连峰). Chin. Phys. B, 2015, 24(3): 036802.
[12] Modeling the interaction of nitrate anions with ozone and atmospheric moisture
A. Y. Galashev. Chin. Phys. B, 2015, 24(10): 103601.
[13] Influence of reaction parameters on synthesis of high-quality single-layer graphene on Cu using chemical vapor deposition
Yang He (杨贺), Shen Cheng-Min (申承民), Tian Yuan (田园), Wang Gao-Qiang (王高强), Lin Shao-Xiong (林少雄), Zhang Yi (张一), Gu Chang-Zhi (顾长志), Li Jun-Jie (李俊杰), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2014, 23(9): 096803.
[14] Study on lattice vibrational properties and Raman spectra of Bi2Te3 based on density-functional perturbation theory
Feng Song-Ke (冯松科), Li Shuang-Ming (李双明), Fu Heng-Zhi (傅恒志). Chin. Phys. B, 2014, 23(8): 086301.
[15] Improved crystal quality of GaN film with the in-plane lattice-matched In0.17Al0.83N interlayer grown on sapphire substrate using pulsed metal–organic chemical vapor deposition
Li Liang (李亮), Yang Lin-An (杨林安), Xue Jun-Shuai (薛军帅), Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(6): 067103.
No Suggested Reading articles found!