Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 048202    DOI: 10.1088/1674-1056/ab75cc
Special Issue: SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale
SPECIAL TOPIC—Advanced calculation & characterization of energy storage materials & devices at multiple scale Prev   Next  

Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries

Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣)
Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081, China
Abstract  It is important for the electrolytes to maintain and enhance the lithium ion battery electrochemical performance, and solvation of Li+ is a key parameter for the property of the electrolytes. The comparative study on Li+ solvation structures, energy, enthalpy, Gibbs free energy, infrared and Raman spectra in common organic electrolyte solvents is completed by density functional theory (DFT) method. The solvation reaction energy results suggest that the Li+ solvation priority order is propylene carbonate (PC) > ethylene carbonate (EC) > ethyl methyl carbonate (EMC) > diethyl carbonate (DEC) > tetrahydrofuran (THF) > dimethyl carbonate (DMC) > 1,3-dioxolane (DOL) > dimethoxyethane (DME) to form 5sol-Li+. It is also indicated that the most innermost solvation shell compounds formations by stepwise spontaneous solvation reaction are four cyclic solvent molecules and three linear solvent molecules combining one Li+ forming 4sol-Li+ and 3sol-Li+, respectively, at room temperature. Besides, the vibration peaks for C=O and C-O bonds in carbonate ester solvents-Li+ compounds shift to lower frequency and higher frequency, respectively, when the Li+ concentration increases in the solvation compounds. All Li-O stretching vibration peaks shift to higher frequency until forming 2solvent-Li+ complexes, and C-H stretching also shifts to higher frequency except for nDME-Li+ solvation compounds. The Raman spectrum is more agile to characterize C-H vibrations and IR is agile to C=O, C-O, and Li-O vibrations for Li+ solvation compounds.
Keywords:  Li+ solvation      frequency shift      infrared spectra      Raman spectra  
Received:  06 October 2019      Revised:  08 February 2020      Accepted manuscript online: 
PACS:  82.45.-h (Electrochemistry and electrophoresis)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by International Science & Technology Cooperation of China (Grant No. 2019YFE0100200), the National Natural Science Foundation of China (Grant No. 51902024), the National Postdoctoral Program for Innovative Talents of China (Grant No. BX20180038), China Postdoctoral Science Foundation (Grant No. 2019M650014), NASF, China (Grant No. U1930113), and Beijing Natural Science Foundation, China (Grant No. L182022).
Corresponding Authors:  Feng Wu, Daobin Mu     E-mail:  wufeng863@vip.sina.com;mudb@bit.edu.cn

Cite this article: 

Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣) Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries 2020 Chin. Phys. B 29 048202

[1] Zhang Y, Yu C, Yang M, Zhang L R, He Y C, Zhang J Y and Yan H 2017 Chin. Phys. Lett. 34 038101
[2] Wang J M, Chen K, Xie W G, Shi T T, Liu P Y, Zheng Y F and Zhu R 2019 Acta Phys. Sin. 68 158806 (in Chinese)
[3] Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D W, Lemmon J P and Liu J 2011 Chem. Rev. 111 3577
[4] Etacheri V, Marom R, Elazari R, Salitra G and Energ. D 2011 Energ. Environ Sci. 4 3243
[5] Armand M and Tarascon J M 2008 Nature 451 652
[6] Alias N and Mohamad A A 2015 J. Power Sources 274 237
[7] Freire M, Kosova N V, Jordy C, Chateigner D, Lebedev O I, Maignan A and Pralong V 2016 Nat. Mater. 15 173
[8] Goodenough J B 2018 Nat. Electron. 1 204
[9] Wu B, Bi J, Liu Q, Mu D, Wang L, Fu J and Wu F 2019 Electrochim. Acta 298 609
[10] Urbonaite S, Poux T and Novák P 2015 Adv. Energ. Mater. 5 1500118
[11] Wang Z, Dong Y, Li H, Zhao Z, Wu H B, Hao C and Lou X W D 2014 Nat. Commun. 5 5002
[12] Chung S H, Chang C H and Manthiram A 2016 Energ. Environ. Sci. 9 3188
[13] Yin Y X, Xin S, Guo Y G and Wan L J 2013 Angew. Chem. Int. Edit. 52 13186
[14] Lu Y, Gu S, Hong X, Rui K, Huang X, Jin J and Wen Z 2018 Energ. Storage Mater. 11 16
[15] Xu K 2004 Chem. Rev. 104 4303
[16] Xu K 2014 Chem. Rev. 114 11503
[17] Liu Q, Zhao Z, Wu F, Mu D, Wang L and Wu B 2019 Solid State Ionics 337 107
[18] An S J, Li J, Daniel C, Mohanty D, Nagpure S and Wood III D L 2016 Carbon 105 52
[19] Edström K, Gustafsson T and Thomas J O 2004 Electrochim. Acta 50 397
[20] Liu Q, Mu D, Wu B, Xu H, Wang L, Gai L and Wu F 2017 J. Electrochem. Soc. 164 A3144-A3153
[21] Patel M U, Demir-Cakan R, Morcrette M, Tarascon J M, Gaberscek M and Dominko R 2013 ChemSusChem. 6 1177
[22] Zhang S S 2012 Electrochim. Acta 70 344
[23] Liu Q, Mu D, Wu B, Wang L, Gai L and Wu F 2017 RSC Adv. 7 33373
[24] See K A, Leskes M, Griffin J M, Britto S, Matthews P D, Emly A and Seshadri R 2014 J. Am. Chem. Soc. 136 16368
[25] Matsuda Y, Fukushima T, Hashimoto H and Arakawa R 2002 J. Electrochem. Soc. 149 A1045-A1048
[26] Borodin O and Smith G D 2006 J. Phys. Chem. B 110 4971
[27] Yamada Y, Koyama Y, Abe T and Ogumi Z 2009 J. Phys. Chem. C 113 8948
[28] Bhatt M D, Cho M and Cho K 2010 Appl. Sur. Sci. 257 1463
[29] Yang L, Xiao A and Lucht B L 2010 J. Mol. Liq. 154 131
[30] Bogle X, Vazquez R, Greenbaum S, Cresce A V W and Xu K 2013 J. Phys. Chem. Lett. 4 1664
[31] Okoshi M, Yamada Y, Yamada A and Nakai H 2013 J. Electrochem. Soc. 160 A2160-A2165
[32] Bhatt M D and O'Dwyer C 2014 Curr. Appl. Phys. 14 349
[33] Suo L, Hu Y S, Li H, Armand M and Chen L 2013 Nat. Commun. 4 1481
[34] Wu B, Liu Q, Mu D, Ren Y, Li Y, Wang L and Wu F 2014 J. Phys. Chem. C 118 28369
[35] Doi T, Masuhara R, Hashinokuchi M, Shimizu Y and Inaba M 2016 Electrochim. Acta 209 219
[36] Wang J, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y and Yamada A 2016 Nat. Commun. 7 12032
[37] Ong M T, Verners O, Draeger E W, Van Duin A C, Lordi V and Pask J E 2015 J. Phys. Chem. B 119 1535
[38] Seo D M, Reininger S, Kutcher M, Redmond K, Euler W B and Lucht B L 2015 J. Phys. Chem. C 119 14038
[39] Logan E R, Tonita E M, Gering K L, Li J, Ma X, Beaulieu L Y and Dahn J R 2018 J. Electrochem. Soc. 165 A21
[40] Liu Q, Cresce A, Schroeder M, Xu K, Mu D, Wu B and Wu F 2019 Energ. Storage Mater. 17 366
[41] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R 2016 Chin. Phys. B 25 018212
[42] Skarmoutsos I, Ponnuchamy V, Vetere V and Mossa S 2015 J. Phys. Chem. C 119 4502
[43] Bhatt M D, Cho M and Cho K 2012 J. Solid State Electr. 16 435
[44] Bhatt M D, Cho M and Cho K 2012 Model. Simul. Mater. Sci. 20 065004
[45] Li Z, Smith G D and Bedrov D 2012 J. Phys. Chem. B 116 12801
[46] Cui W, Lansac Y, Lee H, Hong S T and Jang Y H 2016 Phys. Chem. Chem. Phys. 18 23607
[47] Borodin O, Olguin M, Ganesh P, Kent P R, Allen J L and Henderson W A 2016 Phys. Chem. Chem. Phys. 18 164
[48] Chaban V 2015 Chem. Phys. Lett. 631-632 1
[49] Hou B, Gan Z, et al. 2019 Acta Phys. Sin. 68 128801 (in Chinese)
[50] Frisch M J, Trucks G W, Schlegel H B, et al. 2010 Gaussian 09 Gaussian, Inc., Wallingford, CT
[51] Liu Q, Xu H, Wu F, Mu D, Shi L, Wang L, Bi J and Wu B 2019 ACS Appl. Energy Mater. 2 8878
[1] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[2] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[3] Evaluation of second-order Zeeman frequency shift in NTSC-F2
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Yang Bai(白杨), Fan Yang(杨帆), Yong Guan(管勇), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2021, 30(7): 070601.
[4] Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system
Qilin Ye(叶旗林), Dan Chen(陈旦), and Changgui Lin(林常规). Chin. Phys. B, 2021, 30(1): 016302.
[5] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[6] Effect of metal fluorides on chromium ions doped bismuth borate glasses for optical applications
L Haritha, K Chandra Sekhar, R Nagaraju, G Ramadevudu, Vasanth G Sathe, Md. Shareefuddin. Chin. Phys. B, 2019, 28(3): 038101.
[7] Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties
San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2019, 28(2): 027401.
[8] Optical phonon behavior and magnetism of columbite Zn0.8Co0.2Nb2O6
Liang Li(李亮), Xiaohan Wang(王晓晗), Ying Liu(刘莹), Fangfei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2019, 28(12): 128104.
[9] Effect of external magnetic field on the shift of resonant frequency in photoassociation of ultracold Cs atoms
Pengwei Li(李鹏伟), Yuqing Li(李玉清), Guosheng Feng(冯国胜), Jizhou Wu(武寄洲), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(1): 013702.
[10] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[11] Compression behavior and spectroscopic properties of insensitive explosive 1,3,5-triamino-2,4,6-trinitrobenzene from dispersion-corrected density functional theory
Yan Su(苏艳), Junyu Fan(范俊宇), Zhaoyang Zheng(郑朝阳), Jijun Zhao(赵纪军), Huajie Song(宋华杰). Chin. Phys. B, 2018, 27(5): 056401.
[12] Improvement of laser damage thresholds of fused silica by ultrasonic-assisted hydrofluoric acid etching
Yuan Li(李源), Hongwei Yan(严鸿维), Ke Yang(杨科), Caizhen Yao(姚彩珍), Zhiqiang Wang(王志强), Chunyan Yan(闫春燕), Xinshu Zou(邹鑫书), Xiaodong Yuan(袁晓东), Liming Yang(杨李茗), Xin Ju(巨新). Chin. Phys. B, 2017, 26(11): 118104.
[13] Measurement of transient Raman spectrum on gas-gun loading platform and its application in liquid silane
Yi-Gao Wang(汪贻高), Fu-Sheng Liu(刘福生), Qi-Jun Liu(刘其军), Wen-Peng Wang(王文鹏), Ming-Jian Zhang(张明建), Feng Xi(习锋), Ling-Cang Cai(蔡灵仓), Ning-Chao Zhang(张宁超). Chin. Phys. B, 2017, 26(10): 103301.
[14] Broadband tunable Raman soliton self-frequency shift to mid-infrared band in a highly birefringent microstructure fiber
Wei Wang(王伟), Xin-Ying Bi(毕新英), Jun-Qi Wang(王珺琪), Yu-Wei Qu(屈玉玮), Ying Han(韩颖), Gui-Yao Zhou(周桂耀), Yue-Feng Qi(齐跃峰). Chin. Phys. B, 2016, 25(7): 074206.
[15] Bismuth-content-dependent polarized Raman spectrum of InPBi alloy
Guan-Nan Wei(魏冠男), Qing-Hai Tan(谭青海), Xing Dai(戴兴), Qi Feng(冯琦), Wen-Gang Luo(骆文刚), Yu Sheng(盛宇), Kai Wang(王凯), Wen-Wu Pan(潘文武), Li-Yao Zhang(张立瑶), Shu-Min Wang(王庶民), Kai-You Wang(王开友). Chin. Phys. B, 2016, 25(6): 066301.
No Suggested Reading articles found!