Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 028502    DOI: 10.1088/1674-1056/abb7f6
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Performance analysis of GaN-based high-electron-mobility transistors with postpassivation plasma treatment

Xing-Ye Zhou(周幸叶), Xin Tan(谭鑫), Yuan-Jie Lv(吕元杰)†, Guo-Dong Gu(顾国栋), Zhi-Rong Zhang(张志荣), Yan-Min Guo(郭艳敏), Zhi-Hong Feng(冯志红)‡, and Shu-Jun Cai(蔡树军)§
National Key Laboratory of Application Specific Integrated Circuit, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
Abstract  AlGaN/GaN high-electron-mobility transistors (HEMTs) with postpassivation plasma treatment are demonstrated and investigated for the first time. The results show that postpassivation plasma treatment can reduce the gate leakage and enhance the drain current. Comparing with the conventional devices, the gate leakage of AlGaN/GaN HEMTs with postpassivation plasma decreases greatly while the drain current increases. Capacitance-voltage measurement and frequency-dependent conductance method are used to study the surface and interface traps. The mechanism analysis indicates that the surface traps in the access region can be reduced by postpassivation plasma treatment and thus suppress the effect of virtual gate, which can explain the improvement of DC characteristics of devices. Moreover, the density and time constant of interface traps under the gate are extracted and analyzed.
Keywords:  GaN      HEMT      gate leakage      trapping effect  
Received:  16 July 2020      Revised:  28 August 2020      Accepted manuscript online:  14 September 2020
PACS:  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  73.61.Ey (III-V semiconductors)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674130 and 61804139).
Corresponding Authors:  Corresponding author. E-mail: yuanjielv@163.com Corresponding author. E-mail: ga917vv@163.com §Corresponding author. E-mail: ececai@126.com   

Cite this article: 

Xing-Ye Zhou(周幸叶), Xin Tan(谭鑫), Yuan-Jie Lv(吕元杰), Guo-Dong Gu(顾国栋), Zhi-Rong Zhang(张志荣), Yan-Min Guo(郭艳敏), Zhi-Hong Feng(冯志红), and Shu-Jun Cai(蔡树军) Performance analysis of GaN-based high-electron-mobility transistors with postpassivation plasma treatment 2021 Chin. Phys. B 30 028502

1 Wu Y F, Saxler A, Moore M, et al. 2004 IEEE Electron Dev. Lett. 25 117
2 Hao Y, Yang L, Ma X H, et al. 2011 IEEE Electron Dev. Lett. 32 626
3 Pengelly R S, Wood S M, Milligan J W, et al. 2012 IEEE Trans. Microw. Theory Tech. 60 1764
4 Marti D, Tirelli S, Alt A R, et al. 2012 IEEE Electron Dev. Lett. 33 1372
5 Sanabria C, Chakraborty A, Xu H T, et al. 2006 IEEE Electron Dev. Lett. 27 19
6 Chung J W, Roberts J C, Piner E L, et al. 2008 IEEE Electron Dev. Lett. 29 1196
7 Xia L, Hanson A, Boles T, et al. 2013 Appl. Phys. Lett. 102 113510
8 Arslan E, B\"ut\"un S and Ozbay E 2009 Appl. Phys. Lett. 94 142106
9 Yan D, Lu H, Cao D, et al. 2010 Appl. Phys. Lett. 97 153503
10 Liu Z H, Ng G I, Arulkumaran S, et al. 2011 Appl. Phys. Lett. 98 163501
11 Hanna M J, Zhao H,Lee J C 2012 Appl. Phys. Lett. 101 153504
12 Turuvekere S, Karumuri N, Rahman A A, et al. 2013 IEEE Trans. Electron Dev. 60 3157
13 Zhu J J, Ma X H, Hou B, et al. 2014 Appl. Phys. Lett. 104 153510
14 Dutta G, DasGupta N and DasGupta A 2017 IEEE Trans. Electron Dev. 64 3609
15 Sun Z H, Huang H L, Wang R H, et al. 2020 IEEE Electron Dev. Lett. 41 135
16 Cui X, Cheng W J, Hua Q L, et al. 2020 Nano Energy 68 104361
17 Bai L, Yan W, Li Z F, et al. 2016 Chin. Phys. Lett. 33 067201
18 Zhou X, Wang Y, Tan X, et al. 2019 IEEE International Conference on Electron Devices and Solid-State Circuits, June 12-14, 2019, Xi'an, China
19 Zhao Z J, Lin Z J, Corrigan T D, et al. 2007 Appl. Phys. Lett. 91 173507
20 Lv Y J, Feng Z H, Gu G D, et al. 2015 Chin. Phys. B 24 087306
21 Zhu J J, Ma X H, Xie Y, et al. 2015 IEEE Trans. Electron Dev. 62 512
22 Lu X, Yu K, Jiang H, et al. 2017 IEEE Trans. Electron Dev. 64 824
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[10] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[11] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[12] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[13] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[14] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[15] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
No Suggested Reading articles found!