Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 028503    DOI: 10.1088/1674-1056/abc0df
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C

Si-Cheng Liu(刘思成)1,2, Xiao-Yan Tang(汤晓燕)1,2,3, Qing-Wen Song(宋庆文)1,2,3,†, Hao Yuan(袁昊)1,2, Yi-Meng Zhang(张艺蒙)1,2, Yi-Men Zhang(张义门)1,2,3, and Yu-Ming Zhang(张玉明)1,2,3
1 Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China; 2 School of Microelectronics, Xidian University, Xi'an 710071, China; 3 XiDian-WuHu Research Institute, WuHu 241000, China
Abstract  This paper presents the development of lateral depletion-mode n-channel 4H-SiC junction field-effect transistors (LJFETs) using double-mesa process toward high-temperature integrated circuit (IC) applications. At room temperature, the fabricated LJFETs show a drain-to-source saturation current of 23.03 μ A/μm, which corresponds to a current density of 7678 A/cm2. The gate-to-source parasitic resistance of 17.56 kΩ μ m is reduced to contribute only 13.49% of the on-resistance of 130.15 kΩ μ m, which helps to improve the transconductance up to 8.61 μ S/μm. High temperature characteristics of LJFETs were performed from room temperature to 400 °C. At temperatures up to 400 °C in air, it is observed that the fabricated LJFETs still show normally-on operating characteristics. The drain-to-source saturation current, transconductance and intrinsic gain at 400 °C are 7.47 μ A/μm, 2.35 μ S/μm and 41.35, respectively. These results show significant improvement over state-of-the-art and make them attractive for high-temperature IC applications.
Keywords:  junction field-effect transistors      high temperature      4H-SiC      depletion-mode  
Received:  13 July 2020      Revised:  11 September 2020      Accepted manuscript online:  14 October 2020
PACS:  85.30.Tv (Field effect devices)  
  85.40.Ls (Metallization, contacts, interconnects; device isolation)  
Fund: Project supported by the Key Research and Development Program of Shaanxi Province, China (Grant No. 2020ZDLGY03-07), the National Science Foundation of China (Grant Nos. 61774117 and 61774119), the Science Challenge Project (Grant No. TZ2018003), the National Key R&D Program of China (Grant No. 2017YFB0102302), the Shaanxi Science & Technology Nova Program, China (Grant No. 2019KJXX-029), the Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2020B010170001), and the Fundamental Research Funds for the Central Universities, China (Grant No. 5012-20106205935).
Corresponding Authors:  Corresponding author. E-mail: qwsong@xidian.edu.cn   

Cite this article: 

Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明) Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C 2021 Chin. Phys. B 30 028503

1 Neudeck P G, Okojie R S and Chen L 2002 Proc. IEEE 90 1065
2 Song Q W, Zhang Y M, Han J S, Philop T, Sima D, Zhang Y M, Tang X Y and Guo H 2013 Chin. Phys. B 22 027302
3 Deng Y H, Xie G, Wang T and Sheng K 2013 Chin. Phys. B 22 097201
4 Chen S and Sheng K 2014 Chin. Phys. B 23 077201
5 Watson J and Castro G 2015 J. Mater. Sci.: Mater. Electron. 26 9226
6 Kuhns N, Caley L, Rahman A, Ahmed S, Di J, Mantooth H A, Francis A M and Holmes J 2016 IEEE Trans. Device Mater. Reliab. 16 105
7 Murphree R, Roy S, Ahmed S, Barlow M, Rahman A, Francis A M, Holmes J, Mantooth H A and Di J 2020 IEEE Trans. Power Electron. 35 913
8 Zetterling C, Hallen A, Hedayati R, Kargarrazi S, Lanni L, Malm B G, Mardani S, Norstorm H, Rusu A, Suvanam S S, Tian Y and Ostling M 2017 Semicond. Sci. Technol. 32 034002
9 Tian Y, Lanni L, Rusu A and Zetterling C 2016 IEEE Trans. Electron Devices 63 2242
10 Patil A C, Fu X, Anupongongarch C, Mehregany M and Garverick S L 2009 J. Microelectromech. Syst. 18 950
11 Lien W, Damrongplasit N, Paredes J H, Senesky D G, Liu T K and Pisano A P 2014 IEEE J. Electron Devices Soc. 2 164
12 Spry D J, Neudeck P G, Chen L, Luck D, Chang C W and Beheim G M 2016 IEEE Electron Device Lett. 37 625
13 Sankin I, Bondarenko V, Sheridan D C, Mazzola M S, Casady J B, Fraley J and Schupbach M 2008 Mater. Sci. Forum. 600 1087
14 Kaneko M and Kimoto T 2018 IEEE Electron Device Lett. 39 723
15 Nakajima M, Kaneko M and Kimoto T 2019 IEEE Electron Device Lett. 40 866
16 Neudeck P G, Garverick S L, Spry D J, Chen L, Beheim G M, Krasowski M J and Mehregany M 2009 Phys. Status Solidi A 206 2329
17 Spry D J and Lukco D 2012 J. Electron. Mater. 41 915
18 Spry D J, Neudeck P G, Chen L, Chang C W, Lukco D and Beheim G M 2015 Electrochem. Soc. Trans. 69 113
19 Lanni L 2014 Silicon Carbide Bipolar Technology for High Temperature Integrated Circuits (PhD Dissertation)(KTH Royal Institute of Technology)
20 Malhan R K, Bakowski M, Takeuchi Y, Sugiyama N and Schoner A 2009 Phys. Status Solid A 206 2308
21 Sheppard S T, Lauer V, Wondrak W and Niemann E 1998 Mater. Sci. Forum. 264 1077
22 Neudeck P G, Spry D J, Chen L, Beheim G M, Okojie R S, Chang C W, Meredith R D, Ferrier T L, Evans L J, Krasowski M J and Prokop N F 2008 IEEE Electron Device Lett. 29 456
23 Spry D J, Neudeck P G, Chen L Y, Evans L J, Lukco D, Chang C W and Beheim G M 2016 Mater. Sci. Forum. 858 1112
24 Razavi B2017 Design of Analog CMOS Integrated Circuits, 2nd edn (New York: McGraw-Hill) pp. 47-52
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[4] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[5] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[6] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[7] Induced current of high temperature superconducting loops by combination of exciting coil and thermal switch
Jia-Wen Wang(王佳雯), Yin-Shun Wang(王银顺), Hua Chai(柴华), Ling-Feng Zhu(祝凌峰), and Wei Pi(皮伟). Chin. Phys. B, 2022, 31(3): 037402.
[8] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[9] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[10] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[11] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[12] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[13] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[14] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[15] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
No Suggested Reading articles found!