Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017102    DOI: 10.1088/1674-1056/abb667

Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles

Chun-Ying Pu(濮春英)1, Rong-Mei Yu(于荣梅)1, Ting Wang(王婷)2, Zhen-Yan Xüe(薛振彦)1, Yong-Sheng Zhu(朱永胜)1, and Da-Wei Zhou(周大伟)1,
1 College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China; 2 Department of Mathematics and Statistics, Nanyang Normal University, Nanyang 473061, China
Abstract  Using the particle swarm optimization algorithm on structural search methods, we focus our crystal structures search on boron-rich alkali metal compounds of MB12 (M= Be, Mg, Ca, Sr) with simulation cell sizes of 1-2 formula units (f.u.) at 0 GPa. The structure, electronic, and mechanical properties of MB12 are obtained from the density functional theory using the plane-wave pseudopotential method within the generalized gradient approximations. The formation enthalpies of MB12 regarding to solid metal M and solid alpha-boron suggested the predicted structures can be synthesized except for BeB12. The calculated band structures show MB12 (M= Be, Mg, Ca, Sr) are all indirect semiconductors. All the calculated elastic constants of MB12 satisfy the the mechanical stable conditions. The mechanical parameters (i.e., bulk modulus, shear modulus, and Young's modulus) are derived using the Voigt-Reuss-Hill method. The G/B ratios indicated that the MB12 should exhibit brittle behavior. In addition, the hardness, Debye temperature, universal anisotropic index, and the percentage of anisotropy in compression and shear are also discussed in detail. We hope our results can inspire further experimental study on these boron-rich alkali-metal compounds.
Keywords:  first-principles calculations      structure searching      mechanical properties      boron-rich alkali-metal compounds  
Received:  30 July 2020      Revised:  27 August 2020      Accepted manuscript online:  09 September 2020
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
Fund: Projected supported by the National Natural Science Foundation of China (Grant Nos. U1904179, U1904178, and 51501093), the Key Science Fund of Educational Department of Henan Province, China (Grant Nos. 19A140013 and 20B140010), and the Science Technology Innovation Talents Fund in Universities of Henan Province, China (Grant No. 19HASTIT019).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟) Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles 2021 Chin. Phys. B 30 017102

1 Guo J, Fu H, Zou G, Liu B and Peng Q 2015 J. Alloys Compd. 632 68
2 Jiang X and Zhao J 2015 RSC Adv. 5 48012
3 Hermann A, Mcsorley A, Ashcroft N W and Hoffmann R 2012 J. Am. Chem. Soc. 134 18606
4 Wang M, Li Y, Tian C, Ma Y and Zou G2008 Appl. Phys. Lett. 93 294
5 Wang M, Li Y W, Cui T, Ma Y M and Zou G T 2008 Appl. Phys. Lett. 93 101905
6 Liang Y, Gou Y, Xun Y, Zheng Z and Zhang W 2013 Chem. Phys. Lett. 580 48
7 Gou H, Li Z, Wang L M, Lian J and Wang Y 2012 Aip Adv. 2 012171
8 Gou H, Li Z, Wang L M, Lian J and Wang Y2012 Aip Adv. 2 231
9 Liang Y, Xun Y and Zhang W 2011 Phys. Rev. B 83 220102
10 Matkovich V I, Economy J, Giese R F and Barrett R 2010 Acta Crystallogr. 19 1056
11 Placa S L, Binder I and Post B 1961 J. Inorg. Nucl. Chem. 18 113
12 Akopov G, Sobell Z C, Yeung M T and Kaner R B 2016 Inorg. Chem. 55 12419
13 Schmechel R and Werheit H 1999 J. Phys. Condens. Matter 11 6803
14 Werheit H, Filipov V, Shirai K, Dekura H, Shitsevalova N, Schwarz U and Armbrüster M 2011 J. Phys.: Condens. Matter 23 065403
15 Werheit and Helmut2009 J. Phys. Conf. 176 012019
16 Werheit H 2007 J. Phys. Condens. Matter 19 186207
17 Matthias B T, Geballe T H, Andres K, Corenzwit E, Hull G W and Maita J P 1968 Science 159 530
18 Mar R W and Stout N D 1972 J. Chem. Phys. 57 5342
19 Akopov G, Yeung M T, Sobell Z C, Turner C L, Lin C W and Kaner R B 2016 Chem. Mater. 28 6605
20 Ma T, Li H, Zheng X, Wang S, Wang X, Zhao H, Han S, Liu J, Zhang R, Zhu P, Long Y, Cheng J, Ma Y, Zhao Y, Jin C and Yu X 2017 Adv. Mater. 29 1604003
21 Slater J C 1964 J. Chem. Phys. 41 3199
22 Cannon J F and Farnsworth P B 1983 Journal of the Less Common Metals 92 359
23 Cannon J F, Cannon D M and Hall H T 1977 Journal of the Less Common Metals 56 83
24 Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
25 Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301
26 Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
27 Xia K, Gao H, Liu C, Yuan J, Sun J, Wang H and Xing D 2018 Sci. Bull. 63 817
28 Sun Y, Lv J, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001
29 Cui W W, Li Y W 2019 Chin. Phys. B 28 107104
30 Xu M, Huang C, Li Y, Liu S, Zhong X, Jena P, Kan E and Wang Y 2020 Phys. Rev. Lett. 124 067602
31 Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
32 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
33 Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
34 Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
35 Blöchl P E 1994 Phys. Rev. B 50 17953
36 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
37 Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
38 Hill R1952 Proc. Phys. Soc. London 65 350
39 Hill R 1952 Proc. Phys. Soc. A 65 349
40 Hanies J, Léger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
41 Watt J P and Peselnick L 1980 J. Appl. Phys. 51 1525
42 Watt J P 1980 J. Appl. Phys. 50 6290
43 Nye J F1985 Physical properties of crystals (Oxford: Oxford University Press)
44 Chung D H and Buessem W R1968 Plenum Press, New York 2 217
45 Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2010
46 Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[7] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[8] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[14] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[15] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
No Suggested Reading articles found!