CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Photoluminescence of green InGaN/GaN MQWs grown on pre-wells |
Shou-Qiang Lai(赖寿强)1, Qing-Xuan Li(李青璇)1, Hao Long(龙浩)1, Jin-Zhao Wu(吴瑾照)1, Lei-Ying Ying(应磊莹)1, Zhi-Wei Zheng(郑志威)1, Zhi-Ren Qiu(丘志仁)2, and Bao-Ping Zhang(张保平)1,† |
1 School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract Photoluminescence (PL) characteristics of the structure consisting of green InGaN/GaN multiple quantum wells (MQWs) and low indium content InGaN/GaN pre-wells are investigated. Several PL peaks from pre-wells and green InGaN/GaN MQWs are observed. The peak energy values for both pre-wells and green InGaN/GaN MQWs display an S-shaped variation with temperature. In addition, the differences in the carrier localization effect, defect density, and phonon-exciton interaction between the pre-wells and green InGaN/GaN MQWs, and the internal quantum efficiency of the sample are studied. The obtained results elucidate the mechanism of the luminescence characteristics of the sample and demonstrate the significant stress blocking effect of pre-wells.
|
Received: 30 April 2020
Revised: 10 August 2020
Accepted manuscript online: 09 September 2020
|
PACS:
|
78.66.Fd
|
(III-V semiconductors)
|
|
78.67.De
|
(Quantum wells)
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
Fund: Project supported by the Science Challenge Project, China (Grant No. TZ2016003), the National Key Research and Development Program of China (Grant Nos. 2016YFB0400803 and 2017YFE0131500), and the Fund from the State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, China. |
Corresponding Authors:
†Corresponding author. E-mail: bzhang@xmu.edu.cn
|
Cite this article:
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平) Photoluminescence of green InGaN/GaN MQWs grown on pre-wells 2020 Chin. Phys. B 29 127802
|
[1] Koike M, Shibata N, Kato H and Takahashi Y IEEE J. Selec. Top. Quantum Electron. 8 271 DOI: 10.1109/2944.9991802002 [2] Zhang J Y, Cai L E, Zhang B P, Hu X L, Jiang F, Yu J Z and Wang Q M Appl. Phys. Lett. 95 161110 DOI: 10.1063/1.32542322009 [3] Strite S, Lin M E and Morko H Thin Solid Films 231 197 DOI: 10.1016/0040-6090(93)90713-Y1993 [4] Weng G, Mei Y, Liu J, Hofmann W and Zhang B Opt. Express 24 15546 DOI: 10.1364/OE.24.0155462016 [5] Queren D, Avramescu A, Bruederl G, Breidenassel A, Schillgalies M, Lutgen S and Strauss U Appl. Phys. Lett. 94 689414 DOI: 10.1063/1.30895732009 [6] Chang J Y, Chang Y A, Chen F M, Kuo Y T and Kuo Y K IEEE Photon. Technol. Lett. 25 55 DOI: 10.1109/LPT.2012.22277002013 [7] Weng G E, Zhao W R, Chen S Q, Akiyama H, Li Z C, Liu J P and Zhang B P Nanoscale Res. Lett. 10 1 DOI: 10.1186/1556-276X-10-12015 [8] Jeong H, Jeong H J, Oh H M, Hong C H, Suh E K, Lerondel G and Jeong M S Sci. Rep. 5 9373 DOI: 10.1038/srep093732015 [9] Tawfik W Z, Bae S J, Ryu S W, Jeong T and Lee J K Opt. Mater. 38 131 DOI: 10.1016/j.optmat.2014.10.0152014 [10] Yun Ji W L, Talha Erdem, Rui Chen, Swee Tiam Tan, Zi-Hui Zhang, Zhengang Ju, Xueliang Zhang, Handong Sun, Xiao Wei Sun, Yuji Zhao, Steven P.DenBaars, Shuji Nakamura and Hilmi Volkan Demir Appl. Phys. Lett. 104 143506 DOI: 10.1063/1.48708402014 [11] Pecharromán-Gallego R, Martin R W and Watson I M J. Phys. D: Appl. Phys. 37 2954 DOI: 10.1088/0022-3727/37/21/0032004 [12] Rajabi K, Wei Y, Ding L, He J, Hua Z, Ji Q, Shen B, Yan T and Hu X Superlattices & Microstructures 80 102 DOI: 10.1016/j.spmi.2014.12.0212015 [13] Alam S, Sundaram S, Elouneg-Jamroz M, Li X, El Gmili Y, Robin I C, Voss P L, Salvestrini J P and Ougazzaden A Superlattices & Microstructures 104 291 DOI: 10.1016/j.spmi.2017.02.0362017 [14] Wang J X, Wang L, Zhao W, Zou X and Luo Y Sci. China: Technol. Sci. 53 306 DOI: 10.1007/s11431-010-0062-z2010 [15] Langer T, Jo?Nen H, Kruse A, Bremers H, Rossow U and Hangleiter A Appl. Phys. Lett. 103 022108 DOI: 10.1063/1.48134462013 [16] Wang L, Wang L, Yu J, Hao Z, Luo Y, Sun C, Han Y, Xiong B, Wang J and Li H Acs Appl. Mater. & Interfaces 11 1228 DOI: 10.1021/acsami.8b167672018 [17] Cheng Y C, Lin E C, Wu C M, Yang C C, Yang J R, Rosenauer A, Ma K J, Shi S C, Chen L C and Pan C C Appl. Phys. Lett. 84 2506 DOI: 10.1063/1.16908722004 [18] Lai M H, Zheng Z W, Yu J, Ying L Y and Zhang B P J. Korean Phys. Soc. 68 1291 DOI: 10.3938/jkps.68.12912016 [19] Kumar M S, Park J Y, Lee Y S, Chung S J, Hong C H and Suh E K J. Phys. D: Appl. Phys. 40 5050 DOI: 10.1088/0022-3727/40/17/0072007 [20] Yang F, Zhang Y T, Han X, Li P C, Jiang J Y, Huang Z, Yin J Z, Zhao D G, Zhang B L and Du G T Superlattices & Microstructures 91 259 DOI: 10.1016/j.spmi.2016.01.0242016 [21] Wei T, Zhang L, Ji X, Wang J, Huo Z, Sun B, Hu Q, Wei X, Duan R and Zhao L IEEE Photon. J. 6 1 DOI: 10.1109/JPHOT.2014.23634282014 [22] Zeng Y P, Liu W J, Wen G E, Zhao W R, Zuo H J, Yu J, Zhang J Y, Ying L Y and Zhang B P Chin. Phys. Lett. 32 064207 DOI: 10.1088/0256-307X/32/6/0642072015 [23] Huang Y, Duan X, Cui Y and Lieber C M Nano Lett. 2 101 DOI: 10.1021/nl015667d2002 [24] Shmagin I K, Muth J F, Kolbas R M, Mack M P, Abare A C, Keller S, Coldren L A, Mishra U K and Denbaars S P Appl. Phys. Lett. 71 1455 DOI: 10.1063/1.1199351997 [25] Reshchikov M A and Morkoc H2005 J. Appl. Phys. 97 061301 [26] Ramaiah K S, Su Y K, Chang S J, Kerr B, Liu H P and Chen I G Appl. Phys. Lett. 84 3307 DOI: 10.1063/1.17283022004 [27] Liang M M, Weng G E, Zhang J Y, Cai X M, Xue Q L, Ying L Y and Zhang B P Chin. Phys. B 23 054211 DOI: 10.1088/1674-1056/23/5/0542112014 [28] Xing B, Cao W Y and Du W M2010 Chin. J. Lumin. 6 864 [29] Yu C X, L W, Z L Wang, Zhi B H, Yi L B, Chang Z S, Yan J H, Bing X, Jian W, and Hong T L J. Appl. Phys. 122 135701 DOI: 10.1063/1.50056192017 [30] Wang H, Ji Z, Qu S, Wang G, Jiang Y, Liu B, Xu X and Mino H Opt. Express 20 3932 DOI: 10.1364/OE.20.0039322012 [31] Shan W, Little B D, Song J J, Feng Z C and Stall R Appl. Phys. Lett. 69 3315 DOI: 10.1063/1.1172911996 [32] Hammersley S, Watson-Parris D, Dawson P, Godfrey M J, Badcock T J, Kappers M J, McAleese C, Oliver R A and Humphreys C J J. Appl. Phys. 111 083512 DOI: 10.1063/1.37030622012 [33] Rahman M A and Islam M R2014 Developments in Renewable Energy Technology [34] Kim K, Lambrecht W R L and Segall B Phys. Rev. B 53 16310 DOI: 10.1103/PhysRevB.53.163101996 [35] Li Q, Wang S, Gong Z N, Yun F, Zhang Y and Ding W Optik 127 1809 DOI: 10.1016/j.ijleo.2015.11.0952016 [36] Ebaid M, Kang J H, Lim S H, Ko S M, Cho Y H and Ryu S W Acta Mater. 65 118 DOI: 10.1016/j.actamat.2013.11.0582014 [37] Kawakami Y, Nishizuka K, Yamada D, Kaneta A, Funato M, Narukawa Y and Mukai T Appl. Phys. Lett. 90 261912 DOI: 10.1063/1.27483092007 [38] Murotani H, Shibuya K, Yoneda A, Hashiguchi Y, Miyoshi H, Kurai S, Okada N, Tadatomo K, Yano Y and Tabuchi T Jpn. J. Appl. Phys. 58 DOI: 10.7567/1347-4065/ab040b2019 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|