ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization |
Jisuo Wang(王继锁)1,†, Xiangguo Meng(孟祥国)2,‡, and Xiaoyan Zhang(张晓燕)1,2 |
1 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, College of Physics and Engineering, Qufu Normal University, Qufu 273165, China; 2 Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252059, China |
|
|
Abstract We theoretically introduce two new photon-modulated atomic coherent states (ACSs) via using the Schwinger bosonic representation of the angular momentum operators (the sequential operations J n) on an ACS, and investigate their nonclassicality using the Wigner distribution, photon number distribution, and entanglement entropy. It is found that photon-modulated ACSs possess more stronger nonclassicality than the original ACS in certain regions of τ , the nonclassicality enhances with increasing number n of the operations J and the operation J+(-)n enhances the entanglement in the region of small (large) τ .
|
Received: 03 July 2020
Revised: 01 January 1900
Accepted manuscript online: 01 September 2020
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
05.30.-d
|
(Quantum statistical mechanics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11347026) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2016AM03 and ZR2017MA011). |
Corresponding Authors:
†Corresponding author. E-mail: jswang@qfnu.edu.cn ‡Corresponding author. E-mail: mengxiangguo1978@sina.com
|
Cite this article:
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕) Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization 2020 Chin. Phys. B 29 124213
|
[1] Agarwal G S, Feng D H, Narducci L M, Gilmore R and Tuft R A Phys. Rev. A 20 2040 DOI: 10.1103/PhysRevA.20.20401979 [2] Tang X B and Fan H Y Commun. Theor. Phys. 50 1145 DOI: 10.1088/0253-6102/50/5/272008 [3] Meng X G, Wang J S and Liang B L Chin. Phys. B 19 124205 DOI: 10.1088/1674-1056/19/12/1242052010 [4] Wang J S, Meng X G and Fan H Y Chin. Phys. B 28 100301 DOI: 10.1088/1674-1056/ab3a902019 [5] Gerry C G and Adil B Phys. Rev. A 77 062341 DOI: 10.1103/PhysRevA.77.0623412008 [6] Obada A S F and Abd Al-kader G M J. Mod. Opt. 50 2163 DOI: 10.1080/095003403082345682002 [7] Berrada K, Abdel Khalek S and Raymond Ooi C H Phys. Rev. A 86 033823 DOI: 10.1103/PhysRevA.86.0338232012 [8] Gerry C G and Mark P Phys. Lett. A 372 6480 DOI: 10.1016/j.physleta.2008.08.0742008 [9] Kitagawa A, Takeoka M, Sasaki M and Chefles A Phys. Rev. A 73 042310 DOI: 10.1103/PhysRevA.73.0423102006 [10] Meng X G, Li K C, Wang J S, Zhang X Y, Zhang Z T, Yang Z S and Liang B L Ann. Phys. 532 1900585 DOI: 10.1002/andp.v532.52020 [11] Meng X G, Wang Z, Fan H Y, Wang J S and Yang Z S J. Opt. Soc. Am. B 29 1844 DOI: 10.1364/JOSAB.29.0018442012 [12] Meng X G, Li K C, Wang J S, Yang Z S, Zhang X Y, Zhang Z T and Liang B L Front. Phys. 15 52501 DOI: 10.1007/s11467-020-0967-32020 [13] Wang Z, Meng X G and Fan H Y J. Phys. A: Math. Theor. 46 135305 DOI: 10.1088/1751-8113/46/13/1353052013 [14] Li K C, Meng X G and Wang J S Commun. Theor. Phys. 71 807 DOI: 10.1088/0253-6102/71/7/8072019 [15] Bartley T J, Crowley P J D, Datta A, Nunn J, Zhang L and Walmsley I Phys. Rev. A 87 022313. DOI: 10.1103/PhysRevA.87.0223132013 [16] Olivares S, Paris M G A and Bonifacio R Phys. Rev. A 67 032314 DOI: 10.1103/PhysRevA.67.0323142003 [17] Fan H Y, Li C and Jiang Z H Phys. Lett. A 327 416 DOI: 10.1016/j.physleta.2004.05.0492004 [18] Wang J S, Meng X G and Liang B L Chin. Phys. B 19 014207 DOI: 10.1088/1674-1056/19/1/0142072010 [19] Meng X G, Liu J M, Wang J S and Fan H Y Eur. Phys. J. D 73 32 DOI: 10.1140/epjd/e2018-90224-62019 [20] Liu J M and Meng X G Chin. Phys. B 28 124206 DOI: 10.1088/1674-1056/ab4f5f2019 [21] Fan H Y, Hu L Y and Fan Y Ann. Phys. 321 480 DOI: 10.1016/j.aop.2005.09.0112006 [22] Meng X G, Wang Z, Wang J S and Fan H Y J. Opt. Soc. Am. B 30 1614 DOI: 10.1364/JOSAB.30.0016142013 [23] Kenfack A and \.Zyczkowski K J. Opt. B: Quantum Semiclass. Opt. 6 396 DOI: 10.1088/1464-4266/6/10/0032004 [24] Li K C, Meng X G and Wang J S Int. J. Theor. Phys. 58 2521 DOI: 10.1007/s10773-019-04142-32019 [25] Meng X G, Wang J S, Liang B L and Han C X Front. Phys. 13 130322 DOI: 10.1007/s11467-018-0856-12018 [26] Meng X G, Goan H S, Wang J S and Zhang R Opt. Commun. 411 15 DOI: 10.1016/j.optcom.2017.11.0052018 [27] Bennett C H, Bernstein H J, Popescu S and Schumacher B Phys. Rev. A 53 2046 DOI: 10.1103/PhysRevA.53.20461996 [28] Xu X X Phys. Rev. A 92 012318 DOI: 10.1103/PhysRevA.92.0123182015 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|