Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 124213    DOI: 10.1088/1674-1056/abb3e8
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization

Jisuo Wang(王继锁)1,†, Xiangguo Meng(孟祥国)2,‡, and Xiaoyan Zhang(张晓燕)1,2
1 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, College of Physics and Engineering, Qufu Normal University, Qufu 273165, China; 2 Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252059, China
Abstract  We theoretically introduce two new photon-modulated atomic coherent states (ACSs) via using the Schwinger bosonic representation of the angular momentum operators (the sequential operations J n) on an ACS, and investigate their nonclassicality using the Wigner distribution, photon number distribution, and entanglement entropy. It is found that photon-modulated ACSs possess more stronger nonclassicality than the original ACS in certain regions of τ , the nonclassicality enhances with increasing number n of the operations J and the operation J+(-)n enhances the entanglement in the region of small (large) τ .
Keywords:  photon-modulated atomic coherent state      nonclassicality      Wigner distribution      entanglement  
Received:  03 July 2020      Revised:  01 January 1900      Accepted manuscript online:  01 September 2020
PACS:  42.50.-p (Quantum optics)  
  03.65.-w (Quantum mechanics)  
  05.30.-d (Quantum statistical mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11347026) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2016AM03 and ZR2017MA011).
Corresponding Authors:  Corresponding author. E-mail: jswang@qfnu.edu.cn Corresponding author. E-mail: mengxiangguo1978@sina.com   

Cite this article: 

Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕) Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization 2020 Chin. Phys. B 29 124213

[1] Agarwal G S, Feng D H, Narducci L M, Gilmore R and Tuft R A Phys. Rev. A 20 2040 DOI: 10.1103/PhysRevA.20.20401979
[2] Tang X B and Fan H Y Commun. Theor. Phys. 50 1145 DOI: 10.1088/0253-6102/50/5/272008
[3] Meng X G, Wang J S and Liang B L Chin. Phys. B 19 124205 DOI: 10.1088/1674-1056/19/12/1242052010
[4] Wang J S, Meng X G and Fan H Y Chin. Phys. B 28 100301 DOI: 10.1088/1674-1056/ab3a902019
[5] Gerry C G and Adil B Phys. Rev. A 77 062341 DOI: 10.1103/PhysRevA.77.0623412008
[6] Obada A S F and Abd Al-kader G M J. Mod. Opt. 50 2163 DOI: 10.1080/095003403082345682002
[7] Berrada K, Abdel Khalek S and Raymond Ooi C H Phys. Rev. A 86 033823 DOI: 10.1103/PhysRevA.86.0338232012
[8] Gerry C G and Mark P Phys. Lett. A 372 6480 DOI: 10.1016/j.physleta.2008.08.0742008
[9] Kitagawa A, Takeoka M, Sasaki M and Chefles A Phys. Rev. A 73 042310 DOI: 10.1103/PhysRevA.73.0423102006
[10] Meng X G, Li K C, Wang J S, Zhang X Y, Zhang Z T, Yang Z S and Liang B L Ann. Phys. 532 1900585 DOI: 10.1002/andp.v532.52020
[11] Meng X G, Wang Z, Fan H Y, Wang J S and Yang Z S J. Opt. Soc. Am. B 29 1844 DOI: 10.1364/JOSAB.29.0018442012
[12] Meng X G, Li K C, Wang J S, Yang Z S, Zhang X Y, Zhang Z T and Liang B L Front. Phys. 15 52501 DOI: 10.1007/s11467-020-0967-32020
[13] Wang Z, Meng X G and Fan H Y J. Phys. A: Math. Theor. 46 135305 DOI: 10.1088/1751-8113/46/13/1353052013
[14] Li K C, Meng X G and Wang J S Commun. Theor. Phys. 71 807 DOI: 10.1088/0253-6102/71/7/8072019
[15] Bartley T J, Crowley P J D, Datta A, Nunn J, Zhang L and Walmsley I Phys. Rev. A 87 022313. DOI: 10.1103/PhysRevA.87.0223132013
[16] Olivares S, Paris M G A and Bonifacio R Phys. Rev. A 67 032314 DOI: 10.1103/PhysRevA.67.0323142003
[17] Fan H Y, Li C and Jiang Z H Phys. Lett. A 327 416 DOI: 10.1016/j.physleta.2004.05.0492004
[18] Wang J S, Meng X G and Liang B L Chin. Phys. B 19 014207 DOI: 10.1088/1674-1056/19/1/0142072010
[19] Meng X G, Liu J M, Wang J S and Fan H Y Eur. Phys. J. D 73 32 DOI: 10.1140/epjd/e2018-90224-62019
[20] Liu J M and Meng X G Chin. Phys. B 28 124206 DOI: 10.1088/1674-1056/ab4f5f2019
[21] Fan H Y, Hu L Y and Fan Y Ann. Phys. 321 480 DOI: 10.1016/j.aop.2005.09.0112006
[22] Meng X G, Wang Z, Wang J S and Fan H Y J. Opt. Soc. Am. B 30 1614 DOI: 10.1364/JOSAB.30.0016142013
[23] Kenfack A and \.Zyczkowski K J. Opt. B: Quantum Semiclass. Opt. 6 396 DOI: 10.1088/1464-4266/6/10/0032004
[24] Li K C, Meng X G and Wang J S Int. J. Theor. Phys. 58 2521 DOI: 10.1007/s10773-019-04142-32019
[25] Meng X G, Wang J S, Liang B L and Han C X Front. Phys. 13 130322 DOI: 10.1007/s11467-018-0856-12018
[26] Meng X G, Goan H S, Wang J S and Zhang R Opt. Commun. 411 15 DOI: 10.1016/j.optcom.2017.11.0052018
[27] Bennett C H, Bernstein H J, Popescu S and Schumacher B Phys. Rev. A 53 2046 DOI: 10.1103/PhysRevA.53.20461996
[28] Xu X X Phys. Rev. A 92 012318 DOI: 10.1103/PhysRevA.92.0123182015
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization
Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙). Chin. Phys. B, 2022, 31(5): 054205.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!