Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054205    DOI: 10.1088/1674-1056/ac40f5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization

Xiaoyan Zhang(张晓燕)1, Jisuo Wang(王继锁)1,†, Lei Wang(王磊)1,3, Xiangguo Meng(孟祥国)2,‡, and Baolong Liang(梁宝龙)2
1 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
2 Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252059, China;
3 School of Physics and Electronic Engineering, Heze University, Heze 274015, China
Abstract  Two new photon-modulated spin coherent states (SCSs) are introduced by operating the spin ladder operators J± on the ordinary SCS in the Holstein-Primakoff realization and the nonclassicality is exhibited via their photon number distribution, second-order correlation function, photocount distribution and negativity of Wigner distribution. Analytical results show that the photocount distribution is a Bernoulli distribution and the Wigner functions are only associated with two-variable Hermite polynomials. Compared with the ordinary SCS, the photon-modulated SCSs exhibit more stronger nonclassicality in certain regions of the photon modulated number k and spin number j, which means that the nonclassicality can be enhanced by selecting suitable parameters.
Keywords:  the photon-modulated spin coherent state      nonclassicality      photocount distribution      Wigner distribution function  
Received:  17 October 2021      Revised:  25 November 2021      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  03.65.-w (Quantum mechanics)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No.11347026) and the Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2020MA085 and ZR2020MF113).
Corresponding Authors:  Jisuo Wang,E-mail:jswang@qfnu.edu.cn;Xiangguo Meng,E-mail:mengxiangguo1978@sina.com     E-mail:  jswang@qfnu.edu.cn;mengxiangguo1978@sina.com
About author:  2021-12-8

Cite this article: 

Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙) Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization 2022 Chin. Phys. B 31 054205

[1] Caves C M 1981 Phys. Rev. D 23 1693
[2] Lee S Y and Nha H 2010 Phys. Rev. A 82 053812
[3] Kim M S, Park E, Knight P L and Jeong H 2005 Phys. Rev. A 71 043805
[4] Wenger J, Tualle-Brouri R and Grangier P 2004 Phys. Rev. Lett. 92 153601
[5] Braun D, Jian P, Pinel O and Treps N 2014 Phys. Rev. A 90 013821
[6] Genoni M G and Paris M G A 2010 Phys. Rev. A 82 052341
[7] Walschaers M, Fabre C, Parigi V and Treps N 2017 Phys. Rev. Lett. 119 183601
[8] Giedke G and Cirac J I 2002 Phys. Rev. A 66 032316
[9] Berrada K, Abdel Khalek S and Raymond Ooi C H 2012 Phys. Rev. A 86 033823
[10] Mari A and Eisert J 2012 Phys. Rev. Lett. 109 230503
[11] Ralph T C, Gilchrist A, Milburn G J, Munro W J and Glancy S 2003 Phys. Rev. A 68 042319
[12] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[13] Agarwal G S 1992 Phys. Rev. A 45 1787
[14] Barnett S M, Ferenczi G, Gilson C R and Speirits F C 2018 Phys. Rev. A 98 013809
[15] Wakui K, Takahashi H, Furusawa A and Sasaki M 2007 Opt. Express 15 3568
[16] Hu L Y and Zhang Z M 2012 J. Opt. Soc. Am. B 29 529
[17] Meng X G, Li K C, Wang J S, Zhang X Y, Zhang Z T, Yang Z S and Liang B L 2020 Ann. Phys. 532 1900585
[18] Meng X G, Wang J S, Zhang X Y, Yang Z S, Liang B L and Zhang Z T 2020 Ann. Phys. 532 2000219
[19] Parigi V, Zavatta A and Bellini M 2008 Laser Phys. Lett. 5 246
[20] Roos C F, Chwalla M, Kim K, Riebe M and Blatt R 2006 Nature 443 316
[21] Gerry C C and Benmoussa A 2008 Phys. Rev. A 77 062341
[22] Berrada K 2015 J. Math. Phys. 56 072104
[23] Holstein T and Primakoff H 1940 Phys. Rev. 58 1058
[24] Fan H Y and Hu L Y 2008 Opt. Lett. 33 443
[25] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[26] Meng X G, Wang J S, Liang B L and Han C X 2018 Front. Phys. 13 130322
[27] Fan H Y and Zaidi H R 1987 Phys. Lett. A 124 303
[28] Fan H Y, Wan Z L, Wu Z and Zhang P F 2015 Chin. Phys. B 24 100302
[29] Meng X G, Li K C, Wang J S, Yang Z S, Zhang X Y, Zhang Z T and Liang B L 2020 Front. Phys. 15 52501
[30] Liu J M and Meng X G 2019 Chin. Phys. B 28 124206
[31] Wang J S, Meng X G and Zhang X Y 2020 Chin. Phys. B 29 124213
[1] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕). Chin. Phys. B, 2020, 29(12): 124213.
[2] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[3] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[4] The Wigner distribution function of a super Lorentz–Gauss SLG11 beam through a paraxial ABCD optical system
Zhou Yi-Min (周益民), Zhou Guo-Quan (周国泉). Chin. Phys. B, 2013, 22(10): 104201.
[5] Wigner function and the entanglement of quantized Bessel–Gaussian vortex state of quantized radiation field
Zhu Kai-Cheng (朱开成), Li Shao-Xin (李绍新), Tang Ying (唐英), Zheng Xiao-Juan (郑小娟), Tang Hui-Qin (唐慧琴 ). Chin. Phys. B, 2012, 21(8): 084204.
[6] Nonclassicality of a two-variable Hermite polynomial state
Tan Guo-Bin(谭国斌), Xu Li-Juan(徐莉娟), and Ma Shan-Jun(马善钧) . Chin. Phys. B, 2012, 21(4): 044210.
[7] Comparison of nonclassicality between photon-added and photon-subtracted squeezed vacuum states
Ma Shan-Jun(马善钧) and Luo Wen-Wei(罗文葳) . Chin. Phys. B, 2012, 21(2): 024203.
[8] Decoherence of elliptical states in phase space
Wang Yue-Yuan (王月媛), Liu Zheng-Jun (刘正君), Liao Qing-Hong (廖庆洪), Wang Ji-Cheng (王继成), Liu Shu-Tian (刘树田). Chin. Phys. B, 2011, 20(5): 054201.
[9] A new finite-dimensional thermal coherent state and its Wigner distribution function
Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liang Bao-Long(梁宝龙) . Chin. Phys. B, 2011, 20(1): 014204.
[10] Relations between chirp transform and Fresnel diffraction, Wigner distribution function and a fast algorithm for chirp transform
Shi Peng(石鹏) , Cao Guo-Wei(曹国威), and Li Yong-Ping(李永平). Chin. Phys. B, 2010, 19(7): 074201.
[11] The Wigner function and phase properties of superposition of two coherent states with the vacuum state
Wang Yue-Yuan (王月媛), Wang Ji-Cheng (王继成), Liu Shu-Tian (刘树田). Chin. Phys. B, 2010, 19(7): 074206.
[12] Generalized photon-added coherent state and its quantum statistical properties
Yuan Hong-Chun(袁洪春), Xu Xue-Xiang(徐学翔), and Fan Hong-Yi(范洪义). Chin. Phys. B, 2010, 19(10): 104205.
[13] Entangling two single-mode Gaussian states by use of a beam splitter
Li Hong-Rong(李宏荣), Li Fu-Li(李福利), and Yang Yang(杨杨). Chin. Phys. B, 2006, 15(12): 2947-2952.
[14] Fractional Fourier transform of flat-topped multi-Gaussian beams based on the Wigner distribution function
Wu Ping (吴平), Lü Bai-Da (吕百达), Chen Tian-Lu (陈天禄). Chin. Phys. B, 2005, 14(6): 1130-1135.
No Suggested Reading articles found!