Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 124301    DOI: 10.1088/1674-1056/abb312
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Impact vibration properties of locally resonant fluid-conveying pipes

Bing Hu(胡兵), Fu-Lei Zhu(朱付磊), Dian-Long Yu(郁殿龙)†, Jiang-Wei Liu(刘江伟), Zhen-Fang Zhang(张振方), Jie Zhong(钟杰), and Ji-Hong Wen(温激鸿)
Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China
Abstract  Fluid-conveying pipe systems are widely used in various equipments to transport matter and energy. Due to the fluid-structure interaction effect, the fluid acting on the pipe wall is easy to produce strong vibration and noise, which have a serious influence on the safety and concealment of the equipment. Based on the theory of phononic crystals, this paper studies the vibration transfer properties of a locally resonant (LR) pipe under the condition of fluid-structure interaction. The band structure and the vibration transfer properties of a finite periodic pipe are obtained by the transfer matrix method. Further, the different impact excitation and fluid-structure interaction effect on the frequency range of vibration attenuation properties of the LR pipe are mainly considered and calculated by the finite element model. The results show that the existence of a low-frequency vibration bandgap in the LR pipe can effectively suppress the vibration propagation under external impact and fluid impact excitation, and the vibration reduction frequency range is near the bandgap under the fluid-structure interaction effect. Finally, the pipe impact experiment was performed to verify the effective attenuation of the LR structure to the impact excitation, and to validate the finite element model. The research results provide a technical reference for the vibration control of the fluid-conveying pipe systems that need to consider blast load and fluid impact.
Keywords:  locally resonant pipe      fluid-structure interaction      transfer matrix method      impact vibration properties  
Received:  22 July 2020      Revised:  26 August 2020      Accepted manuscript online:  27 August 2020
PACS:  43.40.+s (Structural acoustics and vibration)  
  47.35.Lf (Wave-structure interactions)  
  46.40.-f (Vibrations and mechanical waves)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11872371) and Major Program of the National Natural Science Foundation of China (Grant Nos. 11991032 and 11991034).
Corresponding Authors:  Corresponding author. E-mail: dianlongyu@vip.sina.com   

Cite this article: 

Bing Hu(胡兵), Fu-Lei Zhu(朱付磊), Dian-Long Yu(郁殿龙), Jiang-Wei Liu(刘江伟), Zhen-Fang Zhang(张振方), Jie Zhong(钟杰), and Ji-Hong Wen(温激鸿) Impact vibration properties of locally resonant fluid-conveying pipes 2020 Chin. Phys. B 29 124301

[1] Keramat A, Tijsseling A S, Hou Q and Ahmadi A J. Fluid Structure 28 434 DOI: 10.1016/j.jfluidstructs.2011.11.0012012
[2] Ferr\`as D, Manso P A, Schleiss A J and Covas D I C Comput. Struct. 175 74 DOI: 10.1016/j.compstruc.2016.06.0062016
[3] Jia Z Z, Ye Q, Liu W, Lu Y, Wu T R, Yang Z H and Zhu S F Procedia Engineering 211 288 DOI: 10.1016/j.proeng.2017.12.0152018
[4] Mahmoodi R, Zolfaghari A and Minuchehr A Comput. Math. Appl. 77 2821 DOI: 10.1016/j.camwa.2019.01.0142019
[5] Diaz-de-Anda A, Pimentel A, Flores J, Morales A, Gutierrez L and Mendez-Sanchez R A J. Acoust. Soc. Am. 117 2814 DOI: 10.1121/1.18807322005
[6] Sharma B and Sun C T J. Sandw. Struct. Mater. 18 50 DOI: 10.1177/10996362155831712015
[7] Yang X D, Cui Q Q, Qian Y J, Zhang W and Lim C W Journal of Applied Mechanics 85 061012 DOI: 10.1115/1.40397552018
[8] Peiró-Torres M P, Casti\ neira-Ibá\ nez S, Redondo J and Sáchez-Pèrez J V Appl. Phys. Lett. 114 171901 DOI: 10.1063/1.50923752019
[9] Wang Y Z and Li F M Chin. Phys. Lett. 29 034301 DOI: 10.1088/0256-307X/29/3/0343012012
[10] Xu Y L, Chen C Q and Tian X G Chin. Phys. Lett. 30 044301 DOI: 10.1088/0256-307X/30/4/0443012013
[11] Yu D L, Liu Y Z, Wang G, Zhao H G and Qiu J J. Appl. Phys. 100 124901 DOI: 10.1063/1.24008032006
[12] Yu D L, Liu Y Z, Zhao H G, Wang G and Qiu J Phys. Rev. B 73 064301 DOI: 10.1103/PhysRevB.73.0643012006
[13] Xiao Y, Wen J H and Wen X S Phys. Lett. A 376 1384 DOI: 10.1016/j.physleta.2012.02.0592012
[14] Xiao Y, Wen J H, Yu D L and Wen X S J. Sound Vib. 332 867 DOI: 10.1016/j.jsv.2012.09.0352013
[15] Zhou W J, Wu B, Su Y P, Liu D Y, Chen W Q and Bao R H Mech. Adv. Mater. Struct. 1 DOI: 10.1080/15376494.2018.15532612019
[16] Chen J S, Sharma B and Sun C T Compos. Struct. 93 2120 DOI: 10.1016/j.compstruct.2011.02.0072011
[17] Chen J S and Sun C T J. Sandw. Struct. Mater. 13 391 DOI: 10.1177/10996362103911242011
[18] Chen J S and Huang Y J 2016 Journal of Vibration and Acoustics 138 0410091 DOI: 10.1115/1.4033197
[19] Pai P F, Peng H and Jiang S Int. J. Mech. Sci. 79 195 DOI: 10.1016/j.ijmecsci.2013.12.0132014
[20] Alamri S, Li B and Tan K T J. Appl. Phys. 123 095111 DOI: 10.1063/1.50150012018
[21] Li Q Q, He Z C, Li E and Cheng A G Smart. Mater. Struct. 27 095015 DOI: 10.1088/1361-665X/aad4792018
[22] Li Q Q, He Z C, Li E and Cheng A G J. Appl. Phys. 125 035104 DOI: 10.1063/1.50299462019
[23] Huang K X, Shui G S, Wang Y Z and Wang Y S Mech. Mater. 148 103497 DOI: 10.1016/j.mechmat.2020.1034972020
[24] Wei Z D, Li B R, Du J M and Yang G Chin. Phys. Lett. 33 044303 DOI: 10.1088/0256-307X/33/4/0443032016
[25] Koo G H and Park Y S J. Sound Vib. 210 53 DOI: 10.1006/jsvi.1997.12921998
[26] Sorokin S V and Ershova O A J. Sound Vib. 278 501 DOI: 10.1016/j.jsv.2003.10.0422004
[27] Sorokin S V and Ershova O A J. Sound Vib. 291 81 DOI: 10.1016/j.jsv.2005.05.0312006
[28] Shen H J, Wen J H, Yu D L and Wen X S J. Sound Vib. 328 57 DOI: 10.1016/j.jsv.2009.07.0322009
[29] Shen H J, Wen J H, Yu D L and Wen X S Acta. Phys. Sin. 58 8357 (in Chinese) DOI: 10.7498/aps.58.83572009
[30] Shen H J, Wen J H, Yu D L, Asgari M and Wen X S J. Sound Vib. 332 4193 DOI: 10.1016/j.jsv.2013.03.0072013
[31] Shen H J, Pa\"ídoussis M P, Wen J H, Yu D L and Wen X S J. Sound Vib. 333 2735 DOI: 10.1016/j.jsv.2014.01.0022014
[32] Shen H J, Wen J H, Yu D L, Yuan B and Wen X S J. Fluid Structure 46 134 DOI: 10.1016/j.jfluidstructs.2014.01.0042014
[33] Liang F and Yang X D Appl. Math. Model 77 522 DOI: 10.1016/j.apm.2019.07.0642020
[34] Sorokin S and Holst-Jensen O Journal of Vibration and Acoustics 134 041003 DOI: 10.1115/1.40056522012
[35] Wang Y Z, Cui H T, Li F M and Kishimoto K Phys. Lett. A 375 2448 DOI: 10.1016/j.physleta.2011.05.0162011
[36] Yu D L, Wen J H, Zhao H G, Liu Y Z and Wen X S J. Sound Vib. 318 193 DOI: 10.1016/j.jsv.2008.04.0092008
[37] Yu D L, Wen J H, Zhao H G, Liu Y Z and Wen X S 2011 Journal of Vibration & Acoustics 133 014502 DOI: http://dx.doi.org/10.1115/1.4001183
[38] Yu D L, Wen J H, Shen H J and Wen X S Phys. Lett. A 376 3417 DOI: 10.1016/j.physleta.2012.09.0412012
[39] Yu D L, Pa\"ídoussis M P, Shen H J and Wang L J. Appl. Mech. 81 011008 DOI: 10.1115/1.40244092014
[40] Yu D L, Du C Y, Shen H J, Liu J W and Wen J H Chin. Phys. Lett. 34 076202 DOI: 10.1088/0256-307X/34/7/0762022017
[41] Yu D L, Shen H J, Liu J W, Yin J F, Zhang Z F and Wen J H Chin. Phys. B 27 064301 DOI: 10.1088/1674-1056/27/6/0643012018
[42] Wen J H, Shen H J, Yu D L and Wen X S Chin. Phys. Lett. 27 114301 DOI: 10.1088/0256-307X/27/11/1143012010
[43] Shen H J, Wen J H, Yu D L and Wen X S IEEE International Conference on Mechatronics and Automation, 7-10 Aug. 2011, p. 1700 DOI: 10.1109/ICMA.2011.59863662011
[44] Iqbal M, Jaya M M, Bursi O S, Kumar A and Ceravolo R Sci. Rep. 10 85 DOI: 10.1038/s41598-019-56724-02020
[45] Khudayarov B A, Komilova K M and Turaev F Z International Journal Of Applied Mechanics 11 1950090 DOI: 10.1142/S175882511950090X2019
[46] Khudayarov B A, Komilova K M, Turaev F Z and Aliyarov J A Int. J. Pressure Vessels Piping 179 104034 DOI: 10.1016/j.ijpvp.2019.1040342020
[47] Liu J W, Yu D L, Zhang Z F, Shen H J and Wen J H Acta. Mech. Solida Sinica 32 173 DOI: 10.1007/s10338-018-0070-22019
[48] Qian Q, Wang L and Ni Q Mech. Res. Commun. 36 413 DOI: 10.1016/j.mechrescom.2008.09.0112009
[49] Gu J J, Dai B, Wang Y, Li M J and Duan M L Ships and Offshore Structures 12 262 DOI: 10.1080/17445302.2015.11355642017
[50] Khudayarov B A, Komilova K M and Turaev F Z Journal of Natural Gas Science And Engineering 75 103148 DOI: 10.1016/j.jngse.2020.1031482020
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
[3] Two-color light-emitting diodes with polarization-sensitive high extraction efficiency based on graphene
H Sattarian, S Shojaei, E Darabi. Chin. Phys. B, 2016, 25(5): 058504.
[4] Surface states in crystals with low-index surfaces
Wang Hui-Ping (王会平), Tao Rui-Bao (陶瑞宝). Chin. Phys. B, 2015, 24(11): 117301.
[5] Simulation of fluid-structure interaction in a microchannel using the lattice Boltzmann method and size-dependent beam element on a graphics processing unit
Vahid Esfahanian, Esmaeil Dehdashti, Amir Mehdi Dehrouye-Semnani. Chin. Phys. B, 2014, 23(8): 084702.
[6] Rectification effect in asymmetric Kerr nonlinear medium
Liu Wan-Guo (刘晚果), Pan Feng-Ming (潘风明), Cai Li-Wei (蔡力伟). Chin. Phys. B, 2014, 23(6): 064213.
[7] Optical properties of the electromagnetic waves propagating in an elliptical cylinder multilayer structure
A. Abdoli-Arani. Chin. Phys. B, 2014, 23(3): 034211.
[8] Analytical study of surface states caused by the edge decoration
Zhao Yuan-Yuan(赵媛媛), Li Wei(李炜), and Tao Rui-Bao(陶瑞宝) . Chin. Phys. B, 2012, 21(2): 027302.
[9] Photon tunneling and transmittance resonance through a multi-layer structure with a left-handed material
He Ying (何英), Zhang Xia (张霞), Yang Yan-Fang (杨艳芳), Li Chun-Fang (李春芳). Chin. Phys. B, 2011, 20(5): 054103.
[10] Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method
Sang Ming-Huang(桑明煌), Yu Zi-Xing(余子星), Li Cui-Cui(李翠翠), and Tu Kai(涂凯) . Chin. Phys. B, 2011, 20(12): 120304.
[11] Quantum reflection as the reflection of subwaves
Yuan Wen(袁文), Yin Cheng(殷澄), Wang Xian-Ping(王贤平), and Cao Zhuang-Qi(曹庄琪). Chin. Phys. B, 2010, 19(9): 093402.
[12] Energy eigenvalues from an analytical transfer matrix method
He Ying(何英), Zhang Fan-Ming(张凡明), Yang Yan-Fang(杨艳芳), and Li Chun-Fang(李春芳). Chin. Phys. B, 2010, 19(4): 040306.
[13] The analytical transfer matrix method for quantum reflection
Xu Tian(许田), Cao Zhuang-Qi(曹庄琪), and Fang Jing-Huai(方靖淮). Chin. Phys. B, 2010, 19(4): 040307.
[14] On the tunneling time of arbitrary continuous potentials and the Hartman effect
Yin Cheng(殷澄), Wu Zhi-Jing(吴至境), Wang Xian-Ping(王贤平), Sun Jing-Jing(孙晶晶), and Cao Zhuang-Qi(曹庄琪). Chin. Phys. B, 2010, 19(11): 117305.
[15] Coupled flexural-torsional vibration band gap in periodic beam including warping effect
Fang Jian-Yu(方剑宇), Yu Dian-Long(郁殿龙), Han Xiao-Yun(韩小云), and Cai Li(蔡力). Chin. Phys. B, 2009, 18(4): 1316-1321.
No Suggested Reading articles found!