We propose a metal/dielectric tri-layer metamaterial for wavefront shaping. By arranging the element in an array with a constant phase gradient and irradiated it with a plane wave, focused and focused vortex beams can be obtained. The designed metamaterial features the excellent capability of focused/focused vortex beams generation within the operating frequency range of 30 GHz–34 GHz. The simulation results are consistent with the theoretical analyses.
* Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY20F050001).
Cite this article:
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)† Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial 2020 Chin. Phys. B 29 104101
Fig. 1.
(a) Scheme of the unit used in the design, (b) top view of the unit.
a/mm
Transmission phase/(°)
Theoretical transmission phase/(°)
Amplitude
1.4
–156.0
–157
0.73
1.347
–110.0
–112
0.75
1.121
–66.2
–67
0.79
0.997
–21.5
–22
0.82
0.924
22
23
0.86
0.868
68.3
68
0.88
0.794
112
113
0.92
0.732
156
158
0.93
Table 1.
The radius a corresponding to the phase and transmission amplitude of our designed model.
Fig. 2.
The radius a corresponding to the phase shift and transmission amplitude at 32 GHz.
Fig. 3.
Panels (a) and (b) are the planes of focused and focused vortex metamaterial, panels (c) and (d) are the three-dimensional (3D) view of metamaterial arrays.
Fig. 4.
(a)–(c) Focused electric field distribution of the y–z plane at 30, 32, and 34 GHz. (d)–(f) Focused electric field distribution of the x–y plane at 30, 32, and 34 GHz. (g)–(i) Focused far-field pattern of the metamaterial at 30 GHz, 32 GHz, and 34 GHz.
Fig. 5.
(a)–(c) Simulation gains at 30 GHz, 32 GHz, and 34 GHz.
Fig. 6.
(a) Incident initial phase; (b) spiral phase; (c) total phase; (d)–(f) Focused vortex electric field distribution at 30, 32 and 34 GHz; (g)–(i) Simulation results of focused vortex phase at 30 GHz, 32 GHz, and 34 GHz.
[1]
Xiao H D, Sun H Y, Gu C Q, Li Z, Chen X L, Xu B J 2019 Prog. Electron. Res. 80 111 DOI: 10.2528/PIERM19010504
Mehmood M Q, Mei S T, Hussain S, Huang K, Siew S Y, Zhang L, Zhang T H, Ling X H, Liu H, Teng J H, Danner A, Zhang S, Qiu C W 2016 Adv. Mater. 28 2533 DOI: 10.1002/adma.201504532
Yu S, Li L, Shi G, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901 DOI: 10.1063/1.4953786
[21]
Cvijetic N, Milione G, Ip E, Wang T 2015 Sci. Rep. 5 15422 DOI: 10.1038/srep15422
[22]
Zhao M M, Fu S F, Zhou S, Song Y L, Zhang Q, Yin Y Q, Zhao Y T, Liang H, Wang X Z 2020 Chin. Phys. B 29 054210 DOI: 10.1088/1674-1056/ab81fa
[23]
Liu K, Cheng Y, Yang Z, Wang H, Qin Y, Li X 2015 IEEE Antenn. Propag. Lett. 14 711 DOI: 10.1109/LAWP.7727
[24]
Xu H, Liu H, Ling X, Sun Y, Yuan F 2017 IEEE Trans. Antenn. Propag. 65 7378 DOI: 10.1109/TAP.2017.2761548
[25]
Wang J, Yang J, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photon. 6 488 DOI: 10.1038/nphoton.2012.138
[26]
Yan Y, Xie G, Lavery M P J, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876 DOI: 10.1038/ncomms5876
[27]
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333 DOI: 10.1126/science.1210713
[28]
Yang H, Cao X, Yang F, Gao J, Xu S, Li M, Chen X, Zhao Y, Zheng Y, Li S 2016 Sci. Rep. 6 35692 DOI: 10.1038/srep35692
[29]
Xu B J, Wu C, Wei Z Y, Fan Y C, Li H Q 2017 Opt. Mater. Express 4 1141 DOI: 10.1364/OME.7.001141
[30]
Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396 DOI: 10.1126/sciadv.1500396
[31]
Xu B J, Wu C, Wei Z Y, Fan Y C, Li H Q 2016 Opt. Mater. Express 6 3940 DOI: 10.1364/OME.6.003940
[32]
Qi M Q, Tang W X, Cui T J 2015 Sci. Rep. 5 11732 DOI: 10.1038/srep11732
[33]
Holloway C L, Kuester E F, Gordon J A, O’Hara J, Booth J, Smith D R 2012 IEEE Antenn. Propag. Mag. 54 10 DOI: 10.1109/MAP.2012.6230714
[34]
Xiao S S 2017 Research of electromagnetic beam controlling surface at KA frequency Master’s Dissertation Harbin Harbin Institute of Technology in Chinese
[35]
Yan M Y, Sun Z C, Wu B R, Cheng P, Xu B J 2020 Frontiers in Physics 8 46 DOI: 10.3389/fphy.2020.00046
[36]
Sun Z C, Yan M Y, Mupona T E, Xu B J 2019 Frontiers in Physics 7 181 DOI: 10.3389/fphy.2019.00181
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.