Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104201    DOI: 10.1088/1674-1056/ab9de7
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Far-zone behaviors of scattering-induced statistical properties of partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam

Yan Li(李艳), Ming Gao(高明)†, Hong Lv(吕宏), Li-Guo Wang(王利国), and Shen-He Ren(任神河)
1 School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China
Abstract  

In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula for the cross-spectral density matrix elements of this beam in the spherical coordinate system is derived. Within the framework of the first-order Born approximation, the effects of the scattering angle θ, the source parameters (i.e., the pulse duration T0 and the temporal coherence length Tcxx), and the scatterer parameter (i.e., the effective width of the medium σR) on the spectral density, the spectral shift, the spectral degree of polarization, and the degree of spectral coherence of the scattered source in the far-zero field are studied numerically and comparatively. Our work improves the scattering theory of stochastic electromagnetic beams and it may be useful for the applications involving the interaction between incident light waves and scattering media.

Keywords:  scattering      partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam      statistical properties      deterministic medium  
Received:  08 March 2020      Revised:  22 April 2020      Accepted manuscript online:  18 June 2020
PACS:  42.25.Fx (Diffraction and scattering)  
  42.25.Ja (Polarization)  
  42.25.Kb (Coherence)  
Corresponding Authors:  Corresponding author. E-mail: minggao1964@163.com   
About author: 
†Corresponding author. E-mail: minggao1964@163.com
* Project supported by the National Natural Science Foundation of China (Grant No. 11504286), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JM-470), the Fund from the International Technology Collaborative Center for Advanced Optical Manufacturing and Optoelectronic Measurement, and the Science Fund from the Shaanxi Provincial Key Laboratory of Photoelectric Measurement and Instrument Technology.

Cite this article: 

Yan Li(李艳), Ming Gao(高明)†, Hong Lv(吕宏), Li-Guo Wang(王利国), and Shen-He Ren(任神河) Far-zone behaviors of scattering-induced statistical properties of partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam 2020 Chin. Phys. B 29 104201

Fig. 1.  

Illustration of symbols relating to incident partially polarized spatially and spectrally partially coherent electromagnetic pulsed source irradiating on deterministic scattering medium in spherical coordinate system.

Parameter Simulation value Unit
Wavelength λ0 632.8 nm
Beam width w0 5 mm
Pulse duration T0 5 fs
Spatial coherence width δαβ δxx = 1, δyy = 0.5 δxx, δxy = δyx = 1.5 δxx mm
Temporal coherence width of the pulse Tcαβ Tcxx = 5, Tcyy = 0.5 Tcxx, Tcxy = Tcyx = 1.5 Tcxx fs
Average amplitudes Aα Ax = 1.5, Ay = 1 /
Correlation coefficient Bαβ Bxx = Byy = 1, $ {B}_{xy}={B}_{yx}^{\ast }=0.3\exp ({\rm{i}}\pi /3) $ /
Effective width of the medium σR 1.0 λ0 nm
Observation azimuth φ 0 rad
Angular frequency ω ω0 = 3.0 × 1015, ω = 1.1 ω0, ω1 = 1.05 ω0, ω2 = 0.95ω0 rad/s
Table 1.  

Simulation parameters.

Fig. 2.  

Contour graphs of normalized spectral intensity of scattered partially polarized spatially and spectrally partially coherent EGSMP beam for different values of σR as a function of θ and [(a1)–(a4)] φ, [(b1)–(b4)] T0, and [(c1)–(c4)] Tcxx.

Fig. 3.  

Comparison between incident field and scattered field with respect to the normalized spectral intensity versus relative spectral shift (ωω0)/ω0 for different values of (a) θ, (b) σR, (c) T0, and (d) Tcxx, with [(a) and (b)] S0 denoting incident normalized spectral intensity, [(c) and (d)] numbers 1 and 2 representing incident normalized spectral intensity, and 3 and 4 referring to scattered normalized spectral intensity.

Fig. 4.  

Behaviors of the spectral DOP of scattered partially polarized spatially and spectrally partially coherent EGSMP beam versus relative spectral shift (ωω0)/ω0 for different values of (a1, a2) θ, (b1, b2) σR, (c1, c2) T0, and (d1, d2) Tcxx, with [(a1)–(d1)] Bxy = Byx = 0, and [(a2)–(d2)] $ {B}_{xy}={B}_{yx}^{\ast }=0.3\times \exp ({\rm{i}}\pi /3) $ .

Fig. 5.  

Behaviors of spectral DOP of both incident and scattered partially polarized spatially and spectrally partially coherent EGSMP beam versus scattering angle θ for different values of [(a1),(a2)] T0 and [(b1), (b2)] Tcxx, with [(a1), (b1)] Bxy = Byx = 0, [(a2), (b2)] $ {B}_{xy}={B}_{yx}^{\ast }=0.3\times \exp ({\rm{i}}\pi /3) $ , numbers 1–3 denoting incident spectral DOP, and numbers 4–6 representing scattered spectral DOP.

Fig. 6.  

Contour graphs of modulus of degree of spectral coherence of scattered partially polarized spatially and spectrally partially coherent EGSMP beam as a function of ω1 and ω2 for different values of θ, σR, T0, and Tcxx.

Fig. 7.  

Curves of modulus of degree of spectral coherence of scattered partially polarized spatially and spectrally partially coherent EGSMP beam versus (ω1ω2)/(ω1 + ω2) for different values of θ, σR, T0, and Tcxx.

Fig. 8.  

The 3D moduli of degree of spectral coherence distribution and corresponding cross line (φ = 0) of scattered partially polarized spatially and spectrally partially coherent EGSMP beam for different values of T0, with numbers 1–3 denoting incident modulus of degree of spectral coherence, and numbers 4–6 referring to scattered modulus of degree of spectral coherence.

Fig. 9.  

3D moduli of degree of spectral coherence distribution and corresponding cross line (φ = 0) of scattered partially polarized spatially and spectrally partially coherent EGSMP beam for different values of Tcxx, with numbers 1–3 denoting incident modulus of degree of spectral coherence, and numbers 4–6 referring to scattered modulus of degree of spectral coherence.

[1]
Wang T, Zhao D M 2010 Opt. Lett. 35 2412 DOI: 10.1364/OL.35.002412
[2]
Ding C L, Cai Y J, Zhang Y T, Pan L Z 2012 J. Opt. Soc. Am. A 29 1078 DOI: 10.1364/JOSAA.29.001078
[3]
Ding C L, Cai Y J, Zhang Y T, Pan L Z 2012 Phys. Lett. A 376 2697 DOI: 10.1016/j.physleta.2012.07.028
[4]
Du X Y 2013 Opt. Express 21 22610 DOI: 10.1364/OE.21.022610
[5]
Zhou J Y, Zhao D M 2017 Opt. Express 25 17114 DOI: 10.1364/OE.25.017114
[6]
Tsang L, Kong J A, Ding K H 2000 Scattering of Electromagnetic Waves: Theories and Applications Chichester John Wiley & Sons, Inc. xi
[7]
Wang X, Liu Z R, Huang K L 2017 J. Opt. Soc. Am. B 34 1755 DOI: 10.1364/JOSAB.34.001755
[8]
Zhang Y Y, Zhou J Y 2018 J. Opt. Soc. Am. B 35 2711 DOI: 10.1364/JOSAB.35.002711
[9]
Li J, Shi Y C 2017 Opt. Express 25 22191 DOI: 10.1364/OE.25.022191
[10]
Zhang Y Y, Zhao D M 2013 Opt. Express 21 24781 DOI: 10.1364/OE.21.024781
[11]
Wang T, Zhao D M 2010 Chin. Phys. B 19 084201 DOI: 10.1088/1674-1056/19/8/084201
[12]
Liu Z R, Huang K L, Wang X 2019 J. Opt. Soc. Am. B 36 3607 DOI: 10.1364/JOSAB.36.003607
[13]
Tong Z S, Korotkova O 2010 Phys. Rev. A 82 033836 DOI: 10.1103/PhysRevA.82.033836
[14]
Du X Y, Zhao D M 2011 Opt. Lett. 36 4749 DOI: 10.1364/OL.36.004749
[15]
Wang X, Liu Z R, Huang K L, Zhu D M 2016 J. Opt. Soc. Am. A 33 1955 DOI: 10.1364/JOSAA.33.001955
[16]
Li J, Chang L P 2015 Opt. Express 23 16602 DOI: 10.1364/OE.23.016602
[17]
Li J, Wu P H, Chang L P, Wu Z F 2015 Laser Phys. 25 096001 DOI: 10.1088/1054-660X/25/9/096001
[18]
Wang H X, Ding C L, Ma B H, Zhao C H, Pan L Z 2015 Opt. Quantum Electron. 47 3365 DOI: 10.1007/s11082-015-0213-3
[19]
Wang H X, Ding C L, Ma B H, Zhao C H, Pan L Z 2016 Opt. Quantum Electron. 48 335 DOI: 10.1007/s11082-016-0592-0
[20]
Lajunen H, Vahimaa P, Tervo J 2005 J. Opt. Soc. Am. A 22 1536 DOI: 10.1364/JOSAA.22.001536
[21]
Gao M, Li Y, Lv H, Gong L 2014 Infrared Phys. Technol. 67 98 DOI: 10.1016/j.infrared.2014.06.008
[22]
Li Y, Gao M 2019 Opt. Eng. 58 116107
[23]
Li Y, Gao M 2020 Appl. Phys. B 126 34 DOI: 10.1007/s00340-020-7380-z
[24]
Voipio T, Setala T, Friberg A T 2013 J. Opt. Soc. Am. A 30 2433 DOI: 10.1364/JOSAA.30.002433
[25]
Wang T, Ding Y, Ji X L, Zhao D M 2015 J. Opt. Soc. Am. A 32 267 DOI: 10.1364/JOSAA.32.000267
[26]
Lahiri M, Wolf E 2009 J. Opt. Soc. Am. A 26 2043 DOI: 10.1364/JOSAA.26.002043
[27]
Lajunen H, Tervo J, Vahimaa P 2004 J. Opt. Soc. Am. A 21 2117 DOI: 10.1364/JOSAA.21.002117
[28]
Voipio T, Setala T, Friberg A T 2012 J. Opt. Soc. Am. A 30 71 DOI: 10.1364/JOSAA.30.000071
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[5] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[6] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[10] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[11] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[12] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[13] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[14] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[15] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
No Suggested Reading articles found!