Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 103701    DOI: 10.1088/1674-1056/aba09f
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis

Yu-Qin Yao(姚玉芹)1,† and Ji Li(李吉)2
1 Department of Applied Mathematics, China Agricultural University, Beijing 102206, China
2 Department of Physics, Taiyuan Normal University, Taiyuan 030031, China
Abstract  

The three-component Gross–Pitaevskii equation with an angular momentum rotational term can be served as a model to study spinor Bose–Einstein condensates (BECs) with time–space modulated interactions. Vortex solutions of the spinor BECs with spatiotemporally modulated interactions are worked out by similarity transformation. Theoretical analysis and numerical simulation of vortex states are demonstrated. Stable vortex states are obtained by adjusting the frequency of the external potential and the spatiotemporally modulated interaction.

Keywords:  spinor Bose-Einstein condensates      spatiotemporal modulation      vortex solution      dynamical stability  
Received:  12 May 2020      Revised:  19 June 2020      Accepted manuscript online:  29 June 2020
PACS:  37.25.+k (Atom interferometry techniques)  
  03.75.Dg (Atom and neutron interferometry)  
Corresponding Authors:  Corresponding author. E-mail: yyqinw@126.com   
About author: 
†Corresponding author. E-mail: yyqinw@126.com
* Project supported by the Beijing Natural Science Foundation, China (Grand No. 1182009) and the National Natural Science Foundation of China (Grant No. 11471182).

Cite this article: 

Yu-Qin Yao(姚玉芹)† and Ji Li(李吉) Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis 2020 Chin. Phys. B 29 103701

Fig. 1.  

The density distributions |Ψ± 1,0|2 and phase diagrams at t = 0 of the vortex solution (9) of the rotating spin-1 BECs for topological charge α = 1. (a1)–(a4) Evolution of the density distributions |Ψ1(x,y,0)|2 for different radial quantum numbers n and the phase diagram. (b1)–(b4) Evolution of the density distributions |Ψ–1(x,y,0)|2 for different radial quantum numbers n and the phase diagram. (c1)–(c4) Evolution of the density distributions |Ψ0(x,y,0)|2 for different radial quantum numbers n and the phase diagram. The parameters are taken as Ω = 0.5, μ1 = 8, μ2 = 4, ϵ = 0 and Ω0 = 1.

Fig. 2.  

The density profiles |Ψ± 1,0|2 and phase diagrams at t = 0 for the vortex solution (9) of the rotating spin-1 BECs for different topological charge α and fixed quantum number n = 1. The blue lines denote the density profiles |Ψ± 1,0|2 for the topological charge α = 1, respectively. The green lines denote the density profiles |Ψ± 1,0|2 for the topological charge α = 2 and the red lines denote the density profiles |Ψ± 1,0|2 for the topological charge α = 3, respectively.

Fig. 3.  

The evolution of density distributions |ψ± 1,0|2 and phase diagrams for the vortex solution (9) of the rotating spin-1 BECs for different values of topological charge α and fixed quantum number n = 1. The first column is stable vortex for the topological charge α = 1. The second and third columns are unstable vortex for the topological charge α = 2 and α = 3, respectively. The parameters are Ω = 0.5, μ1 = 8, μ2 = 4, ϵ = 0 and ω0 = 1. The domain is (x,y) ∈ [–5,5] × [–5,5] for all the cases.

Fig. 4.  

The evolution of density distributions |ψ± 1,0|2 and phase diagrams for the vortex solution (9) of the rotating spin-1 BECs for the fixed topological charge α and different quantum number n = 1. (a1)–(c3) Evolution of density distributions |ψ± 1,0|2 and phase diagrams for the quantum number n = 1. (d1)–(f3) Evolution of density distributions |ψ± 1,0|2 and phase diagrams for the quantum number n = 2. The parameters are Ω = 0.5, μ1 = 8, μ2 = 4, ϵ = 0 and ω0 = 1.

Fig. 5.  

Time evolution of density distributions |ψ± 1,0|2 and phase diagrams for the vortex solution (9) of the rotating spin-1 BECs for different values of topological charge α and quantum number n. The first three lines show the evolution of density distributions |ψ± 1,0|2 and phase diagrams for n = α = 1. The three lines in the middle show the evolution of density distributions |ψ± 1,0|2 and phase diagrams for n = 1 and α = 2. The last three lines demonstrate the evolution of density distributions |ψ± 1,0|2 and phase diagrams for n = 2 and α = 1. The parameters are Ω = 0.5, μ1 = 8, μ2 = 4, ϵ = 0.1 and ω0 = 0.2.

[1]
Ho T L, Shenoy V B 1996 Phys. Rev. Lett. 77 3276 DOI: 10.1103/PhysRevLett.77.3276
[2]
Ho T L 1998 Phys. Rev. Lett. 81 742 DOI: 10.1103/PhysRevLett.81.742
[3]
Ohmi T, Machida K 1998 J. Phys. Soc. Jpn. 67 1822 DOI: 10.1143/JPSJ.67.1822
[4]
Isoshima T, Machida K, Ohmi T 1998 Phys. Rev. A 60 4857 DOI: 10.1103/PhysRevA.60.4857
[5]
Stamper-Kurn D M et al. 1998 Phys. Rev. Lett. 80 2027 DOI: 10.1103/PhysRevLett.80.2027
[6]
Chang M S, Hamley C D et al. 2004 Phys. Rev. Lett. 92 140403 DOI: 10.1103/PhysRevLett.92.140403
[7]
Black A T, Gomez E, Turner L D, Jung S, Lett P D 2007 Phys. Rev. Lett. 99 070403 DOI: 10.1103/PhysRevLett.99.070403
[8]
Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403 DOI: 10.1103/PhysRevLett.105.160403
[9]
Choi J, Kwon W J, Shin Y 2012 Phys. Rev. Lett. 108 035301 DOI: 10.1103/PhysRevLett.108.035301
[10]
Ueda M 2014 Reports on Progress in Physics 77 2014
[11]
Seo S W, Kang S, Kwon W J, Shin Y 2015 Phys. Rev. Lett. 115 015301 DOI: 10.1103/PhysRevLett.115.015301
[12]
Mawson T, Ruben G, Simula T 2015 Phys. Rev. A 91 063630 DOI: 10.1103/PhysRevA.91.063630
[13]
Vinit A, Raman C 2017 Phys. Rev. A 95 011603 DOI: 10.1103/PhysRevA.95.011603
[14]
Yao Y Q, Han W, Li J, Liu W M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 105001 DOI: 10.1088/1361-6455/aabc03
[15]
Madison K W, Chevy F, Wohlleben W, Dalibard J 2000 Phys. Rev. Lett. 84 806 DOI: 10.1103/PhysRevLett.84.806
[16]
Yi S, Li T, Sun C P 2007 Phys. Rev. Lett. 98 260405 DOI: 10.1103/PhysRevLett.98.260405
[17]
Neely T W, Bradley A S et al. 2013 Phys. Rev. Lett. 111 235301 DOI: 10.1103/PhysRevLett.111.235301
[18]
Kasamatsu K, Tsubota M, Ueda M 2003 Phys. Rev. Lett. 91 150406 DOI: 10.1103/PhysRevLett.91.150406
[19]
Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225 DOI: 10.1103/RevModPhys.82.1225
[20]
Kengne E, Shehou A, Lakhssassi A 2016 Eur. Phys. J. B 89 78 DOI: 10.1140/epjb/e2016-60931-y
[21]
Wang D S, Hu X H, Liu W M 2010 Phys. Rev. A 82 023612 DOI: 10.1103/PhysRevA.82.023612
[22]
Yamazaki R, Taie S, Sugawa S, Takahashi Y 2010 Phys. Rev. Lett. 105 050405 DOI: 10.1103/PhysRevLett.105.050405
[23]
Alexander T J, Heenan K, Salerno M, Ostrovskaya E A 2012 Phys. Rev. A 85 063626 DOI: 10.1103/PhysRevA.85.063626
[24]
Yao Y Q, Li J, Han W, Liu W M 2016 Sci. Rep. 89 78
[25]
Burlak G, Malomed B A 2008 Phys. Rev. A 77 053606 DOI: 10.1103/PhysRevA.77.053606
[26]
Zhang J F, Li Y S, Meng J P, Wu L, Malomed B A 2010 Phys. Rev. A 82 033614 DOI: 10.1103/PhysRevA.82.033614
[27]
Gerton J M, Frew B J, Hulet R G 2001 Phys. Rev. A 64 053410 DOI: 10.1103/PhysRevA.64.053410
[28]
Bergeman T, Moore M G, Olshanii M 2003 Phys. Rev. Lett. 91 163201 DOI: 10.1103/PhysRevLett.91.163201
[29]
Anderson M H, Ensher J R, Matthews M R et al. 1995 Science 269 198 DOI: 10.1126/science.269.5221.198
[30]
Theocharis G, Frantzeskakis D J, Kevrekidis P G et al. 2003 Phys. Rev. Lett. 90 120403 DOI: 10.1103/PhysRevLett.90.120403
[31]
Saito H, Ueda M 2003 Phys. Rev. Lett. 90 040403 DOI: 10.1103/PhysRevLett.90.040403
[1] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[2] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[3] Dynamics of spinor Bose-Einstein condensate subject to dissipation
Man-Man Pang(庞曼曼), Ya-Jiang Hao(郝亚江). Chin. Phys. B, 2016, 25(4): 040501.
[4] High volumetric hydrogen density phases of magnesium borohydride at high-pressure: A first-principles study
Fan Jing (范靖), Bao Kuo (包括), Duan De-Fang (段德芳), Wang Lian-Cheng (汪连城), Liu Bing-Bing (刘冰冰), Cui Tian (崔田). Chin. Phys. B, 2012, 21(8): 086104.
No Suggested Reading articles found!