Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 088501    DOI: 10.1088/1674-1056/ab9286
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Total dose test with γ-ray for silicon single photon avalanche diodes

Qiaoli Liu(刘巧莉)1,2, Haiyan Zhang(张海燕)3, Lingxiang Hao(郝凌翔)2, Anqi Hu(胡安琪)2, Guang Wu(吴光)3, Xia Guo(郭霞)2
1 School of Information, Beijing University of Technology, Beijing 100124, China;
2 School of Electronic Engineering, State Key Laboratory for Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  Gamma-ray (γ-ray) radiation for silicon single photon avalanche diodes (Si SPADs) is evaluated, with total dose of 100 krad(Si) and dose rate of 50 rad(Si)/s by using 60Co as the γ-ray radiation source. The breakdown voltage, photocurrent, and gain have no obvious change after the radiation. However, both the leakage current and dark count rate increase by about one order of magnitude above the values before the radiation. Temperature-dependent current-voltage measurement results indicate that the traps caused by radiation function as generation and recombination centers. Both leakage current and dark count rate can be almost recovered after annealing at 200℃ for about 2 hours, which verifies the radiation damage mechanics.
Keywords:  gamma-ray radiation      silicon single photon avalanche diode (Si SPAD)      radiation damage  
Received:  15 February 2019      Revised:  23 April 2020      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFF0104801).
Corresponding Authors:  Xia Guo     E-mail:  guox@bupt.edu.cn

Cite this article: 

Qiaoli Liu(刘巧莉), Haiyan Zhang(张海燕), Lingxiang Hao(郝凌翔), Anqi Hu(胡安琪), Guang Wu(吴光), Xia Guo(郭霞) Total dose test with γ-ray for silicon single photon avalanche diodes 2020 Chin. Phys. B 29 088501

[1] Dautet H, Deschamps P, Dion B, MacGregor A D, MacSween D, McIntyre R J, Trottier C and Webb P P 1993 Appl. Optics 32 3894
[2] Vines P, Kuzmenko K, Kirdoda J, Dumas D C, Mirza M M, Millar R W, Paul D J and Buller G S 2019 Nat. Commun. 10 1
[3] Pagano R, Lombardo S, Palumbo F, Sanfilippo D, Valvo G, Fallica G and Libertino S 2014 Nucl. Instrum. Methods A 767 347
[4] Manning R 1993 16th Annual AAS Guidance and Control Conference 93 179
[5] Dixit V K, Khamari S K, Manwani S, Porwal S, Alexander K, Sharma T K, Kher S and Oak M 2015 Nucl. Instrum. Methods A 785 93
[6] Pagano R, Lombardo S, Palumbo F, Sanfilippo D, Valvo G, Fallica G and Libertino S 2014 Nucl. Instrum. Methods A 767 347
[7] Irani K H, Pil-Ali A and Karami M A 2017 Opt. Quant. Electron. 49 292
[8] Moscatelli F, Marisaldi M, Maccagnani P, Labanti C, Fuschino F, Prest M, Berra A, Bolognini D, Ghioni M, Rech I, Gulinatti A, Giudice A, Simmerle G, Candelori A, Mattiazzo S, Sun X, Cavanaugh J F and Rubini D 2013 Nucl. Instrum. Methods A 711 65
[9] Goiffon V, Cervantes P, Virmontois C, Corbiére F, Magnan P and Estribeau M 2011 IEEE T. Nucl. Sci. 58 3076
[10] Gill K, Hall G and MacEvoy B 1997 J. Appl. Phys. 82 126
[11] Chynoweth A G and McKay K G 1957 Phys. Rev. 106 418
[12] Dalapati P, Manik N B and Basu A N 2014 Cryogenics 65 10
[13] Yan D, Lu H, Chen D, Zhang R and Zheng Y 2010 Appl. Phys. Lett. 96 083504
[14] Dalapati P, Manik N B and Basu A N 2014 J. Semicond. 35 082001
[15] Nadenau V, Rau U, Jasenek A and Schock H W 2000 J. Appl. Phys. 87 584
[16] Pattabi M, Krishnan S and Sanjeev G 2007 Sol. Energ. Mat. Sol. C 91 1521
[17] Feng Y J, Li C, Liu Q L, Wang H Q, Hu A Q, He X Y and Guo X 2018 Chin. Phys. B 27 048501
[18] Yang S, Zhou D, Cai X, Xu W, Lu H, Chen D, Ren F, Zhang R and Zheng Y 2017 IEEE T. Electron Dev. 64 4532
[19] Cheng Z, Zheng X, Palubiak D, Jamal Deen M and Peng H 2016 IEEE Tran. Electron Dev. 63 1940
[20] Saks N S, Dozier C M and Brown D B 1988 IEEE Tran. Nucl. Sci. 35 1168
[21] McWhorter P J, Miller S L and Miller W M 1990 IEEE Tran. Nucl. Sci. 37 1682
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[3] Energetics and diffusion of point defects in Au/Ag metals:A molecular dynamics study
Zhi-Yong Liu(刘志勇), Bin He(何彬), Xin Qu(瞿鑫), Li-Bo Niu(牛莉博), Ru-Song Li(李如松), Fei Wang(王飞). Chin. Phys. B, 2019, 28(8): 083401.
[4] Orienting the future of bio-macromolecular electron microscopy
Fei Sun(孙飞). Chin. Phys. B, 2018, 27(6): 063601.
[5] Estimation of enhanced low dose rate sensitivity mechanisms using temperature switching irradiation on gate-controlled lateral PNP transistor
Xiao-Long Li(李小龙), Wu Lu(陆妩), Xin Wang(王信), Xin Yu(于新), Qi Guo(郭旗), Jing Sun(孙静), Mo-Han Liu(刘默寒), Shuai Yao(姚帅), Xin-Yu Wei(魏昕宇), Cheng-Fa He(何承发). Chin. Phys. B, 2018, 27(3): 036102.
[6] An investigation of ionizing radiation damage in different SiGe processes
Pei Li(李培), Mo-Han Liu(刘默寒), Chao-Hui He(贺朝会), Hong-Xia Guo(郭红霞), Jin-Xin Zhang(张晋新), Ting Ma(马婷). Chin. Phys. B, 2017, 26(8): 088503.
[7] Study on irradiation-induced defects in GaAs/AlGaAs core-shell nanowires via photoluminescence technique
Li-Ying Tan(谭立英), Fa-Jun Li(黎发军), Xiao-Long Xie(谢小龙), Yan-Ping Zhou(周彦平), Jing Ma(马晶). Chin. Phys. B, 2017, 26(8): 086201.
[8] Proton radiation effect on GaAs/AlGaAs core-shell ensemble nanowires photo-detector
Li-Ying Tan(谭丽英), Fa-Jun Li(黎发军), Xiao-Long Xie(谢小龙), Yan-Ping Zhou(周彦平), Jing Ma(马晶). Chin. Phys. B, 2017, 26(8): 086202.
[9] Effect of helium implantation on SiC and graphite
Guo Hong-Yan (郭洪燕), Ge Chang-Chun (葛昌纯), Xia Min (夏敏), Guo Li-Ping (郭立平), Chen Ji-Hong (陈济鸿), Yan Qing-Zhi (燕青芝). Chin. Phys. B, 2015, 24(3): 037803.
[10] Krypton ion irradiation-induced amorphization and nano-crystal formation in pyrochlore Lu2Ti2O7 at room temperature
Xie Qiu-Rong (谢秋荣), Zhang Jian (张建), Yin Dong-Min (尹东明), Guo Qi-Xun (郭奇勋), Li Ning (李宁). Chin. Phys. B, 2015, 24(12): 126103.
[11] Irradiation effect of yttria-stabilized zirconia by high dose dual ion beam irradiation
Zhang Yan-Wen (张艳文), Wang Xu (王绪), Liu Shi-Yi (刘士毅), Tang Mei-Xiong (唐美雄), Zhao Zi-Qiang (赵子强), Zhang Peng (张鹏), Wang Bao-Yi (王宝义), Cao Xing-Zhong (曹兴忠). Chin. Phys. B, 2014, 23(6): 066105.
[12] Mechanical properties of self-irradiated single-crystal copper
Li Wei-Na (李维娜), Xue Jian-Ming (薛建明), Wang Jian-Xiang (王建祥), Duan Hui-Ling (段慧玲). Chin. Phys. B, 2014, 23(3): 036101.
[13] Microstructure evolution of zircaloy-4 during Ne ion irradiation and annealing:An in situ TEM investigation
Shen Hua-Hai (申华海), Peng Shu-Ming (彭述明), Zhou Xiao-Song (周晓松), Sun Kai (孙凯), Wang Lu-Ming (王鲁闽), Zu Xiao-Tao (祖小涛). Chin. Phys. B, 2014, 23(3): 036102.
[14] Molecular dynamics simulations of displacement cascades in Fe–10%Cr systems
Yu Gang(郁刚), Ma Yan(马雁), Cai Jun(蔡军), and Lu Dao-Gang(陆道纲) . Chin. Phys. B, 2012, 21(3): 036101.
[15] Molecular dynamics simulations of point defects in plutonium grain boundaries
Ao Bing-Yun(敖冰云), Xia Ji-Xing(夏吉星), Chen Pi-Heng(陈丕恒), Hu Wang-Yu(胡望宇), and Wang Xiao-Lin(汪小琳) . Chin. Phys. B, 2012, 21(2): 026103.
No Suggested Reading articles found!